cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059007 Numbers m such that m^2 reversed is a prime.

Original entry on oeis.org

4, 14, 19, 28, 32, 37, 38, 40, 41, 62, 85, 89, 95, 97, 106, 119, 136, 139, 140, 190, 193, 196, 266, 271, 274, 277, 280, 281, 313, 316, 320, 325, 328, 331, 334, 335, 353, 355, 361, 362, 370, 373, 377, 380, 383, 397, 398, 400, 401, 403, 410, 412, 421, 434, 439
Offset: 1

Views

Author

Robert G. Wilson v, Jan 16 2001

Keywords

Examples

			28 is in the sequence because the reverse of 28^2 is 487 which is a prime. - _Indranil Ghosh_, Feb 10 2017
		

Crossrefs

Cf. A007488.
Numbers m such that m^k reversed is a prime: A059008 (k=3), A059205 (k=4), A059206 (k=5), A059207 (k=6), A059208 (k=7), A059209 (k=8), A059210 (k=9), A059211 (k=10), A059212 (k=11), A059213 (k=12).

Programs

  • Magma
    [n: n in [1..500] | IsPrime(Seqint(Reverse(Intseq(n^2))))]; // Marius A. Burtea, Jan 12 2019
    
  • Mathematica
    Select[ Range[ 1000 ], PrimeQ[ ToExpression[ StringReverse[ ToString[ #^2 ] ] ] ] & ]
    Select[Range[500],PrimeQ[IntegerReverse[#^2]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 10 2019 *)
  • PARI
    isok(n) = isprime(fromdigits(Vecrev(digits(n^2)))); \\ Michel Marcus, Jan 12 2019

A059704 Primes p such that p^11 reversed is also prime.

Original entry on oeis.org

17, 73, 83, 157, 277, 293, 359, 661, 739, 863, 1489, 1601, 2311, 2851, 2939, 3499, 3733, 3739, 4423, 4447, 4567, 4793, 5297, 5501, 5519, 5521, 5573, 6379, 6791, 6899, 6983, 7333, 7351, 7411, 7853, 8179, 9001, 9013, 9743, 9787, 10159, 10627, 11119
Offset: 1

Views

Author

Robert G. Wilson v, Feb 06 2001

Keywords

Crossrefs

Cf. A059212.

Programs

  • Magma
    [p: p in PrimesUpTo(15000)|IsPrime(Seqint(Reverse(Intseq(p^11))))]; // Vincenzo Librandi, Apr 12 2013
  • Mathematica
    Select[ Range[ 16000 ], PrimeQ[ # ] && PrimeQ[ ToExpression[ StringReverse[ ToString[ #^11 ] ] ] ] & ]
    Select[Prime[Range[1500]],PrimeQ[IntegerReverse[#^11]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 24 2020 *)
Showing 1-2 of 2 results.