cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059245 Primes p such that x^13 = 2 has no solution mod p.

Original entry on oeis.org

53, 79, 131, 157, 313, 443, 521, 547, 599, 677, 859, 911, 937, 1093, 1171, 1223, 1249, 1301, 1327, 1483, 1613, 1847, 1873, 1951, 2003, 2029, 2081, 2237, 2341, 2393, 2549, 2731, 2861, 2887, 2939, 3121, 3251, 3329, 3407, 3433, 3511, 3719, 3797, 3823, 4057
Offset: 1

Views

Author

Klaus Brockhaus, Jan 21 2001

Keywords

Comments

Complement of A049545 relative to A000040.
Presumably this is the same as Primes congruent to 1 mod 13. - N. J. A. Sloane, Jul 11 2008
The smallest counterexample is 4421: 4421 == 1 (mod 13), but 162^13 == 2 (mod 4421), therefore this prime is not in the sequence. - Bruno Berselli, Sep 12 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(4500) | forall{x: x in ResidueClassRing(p) | x^13 ne 2}]; // Bruno Berselli, Sep 12 2012
  • Mathematica
    Select[Prime[Range[PrimePi[5000]]], ! MemberQ[PowerMod[Range[#], 13, #], Mod[2, #]] &] (* T. D. Noe, Sep 12 2012 *)
    ok[p_]:= Reduce[Mod[x^13 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[600]], ok] (* Vincenzo Librandi, Sep 20 2012  *)