A099475 Number of divisors d of n such that d+2 is also a divisor of n.
0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 2, 1, 0, 1, 0, 1, 1, 0, 0, 4, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 4, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 5, 0, 0, 2, 1, 0, 1, 0, 1, 1, 1, 0, 4, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0, 0, 4, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 4, 0, 0, 2, 1, 0, 1, 0, 1, 3
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A099475:= proc(n) local d; d:= numtheory:-divisors(n); nops(d intersect map(`+`,d,2)) end proc: map(A099475,[$1..1000]); # Robert Israel, Jun 19 2015
-
Mathematica
a[n_] := DivisorSum[n, Boole[Divisible[n, #+2]]&]; Array[a, 105] (* Jean-François Alcover, Dec 07 2015 *)
-
PARI
A099475(n) = { sumdiv(n, d, ! (n % (d+2))) } \\ Michel Marcus, Jun 18 2015
Formula
0 <= a(n) <= a(m*n) for all m>0;
a(n) = Sum_{i=1..n-1} chi((2*n-i)/i) * chi(i*(2*n-i)/(2*n-2*i)), where chi(n) = 1 - ceiling(n) + floor(n). - Wesley Ivan Hurt, Apr 24 2020
Comments