cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059299 Triangle of idempotent numbers (version 3), T(n, k) = binomial(n, k) * (n - k)^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 24, 4, 0, 1, 20, 90, 80, 5, 0, 1, 30, 240, 540, 240, 6, 0, 1, 42, 525, 2240, 2835, 672, 7, 0, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 0, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 0, 1, 90, 2880, 41160
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Examples

			Triangle begins:
1,
1,  0,
1,  2,   0,
1,  6,   3,    0,
1, 12,  24,    4,    0,
1, 20,  90,   80,    5,   0,
1, 30, 240,  540,  240,   6, 0,
1, 42, 525, 2240, 2835, 672, 7, 0,
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297-A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n,k)*(n-k)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T := (n, k) -> binomial(n, k) * (n - k)^k:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    t[n_, k_] := Binomial[n, k]*(n - k)^k; Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • PARI
    concat([1], for(n=0, 25, for(k=0, n, print1(binomial(n,k)*(n-k)^k, ", ")))) \\ G. C. Greubel, Jan 05 2017

Extensions

Name corrected by Peter Luschny, Nov 12 2023