cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059297 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 12, 1, 0, 5, 80, 90, 20, 1, 0, 6, 240, 540, 240, 30, 1, 0, 7, 672, 2835, 2240, 525, 42, 1, 0, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 0, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 0, 10, 11520, 262440
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Comments

T(n,k) = C(n,k)*k^(n-k) is the number of functions f from domain [n] to codomain [n+1] such that f(x)=n+1 for exactly k elements x of [n] and f(f(x))=n+1 for the remaining n-k elements x of [n]. Subsequently, row sums of T(n,k) provide the number of functions f:[n]->[n+1] such that either f(x)=n+1 or f(f(x))=n+1 for every x in [n]. We note that there are C(n,k) ways to choose the k elements mapped to n+1 and there are k^(n-k) ways to map n-k elements to a set of k elements. - Dennis P. Walsh, Sep 05 2012
Conjecture: the matrix inverse is A137452. - R. J. Mathar, Mar 12 2013
The above conjecture is correct. This triangle is the exponential Riordan array [1, x*exp(x)]. Thus the inverse array is the exponential Riordan array [ 1, W(x)], which equals A137452. - Peter Bala, Apr 08 2013

Examples

			Triangle begins:
1;
0,  1;
0,  2,   1;
0,  3,   6,    1;
0,  4,  24,   12,    1;
0,  5,  80,   90,   20,   1;
0,  6, 240,  540,  240,  30,  1;
0,  7, 672, 2835, 2240, 525, 42,  1;
Row 4. Expansion of x^4 in terms of Abel polynomials:
x^4 = -4*x+24*x*(x+2)-12*x*(x+3)^2+x*(x+4)^3.
O.g.f. for column 2: A(-2,1/x) = x^2/(1-2*x)^3 = x^2+6*x^3+24*x^4+80*x^5+....
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297, A059298, A059299, A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248.
Cf. A061356, A202017, A137452 (inverse array), A264428.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T:= (n, k)-> binomial(n, k) *k^(n-k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 05 2012
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Prepend[Map[Prepend[#,0]&,Rest[Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x Exp[x]],{x,0,nn}],{x,y}]]]],{1}]//Grid  (* Geoffrey Critzer, Feb 09 2013 *)
    t[n_, k_] := Binomial[n, k]*k^(n - k); Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • Sage
    # uses[bell_transform from A264428]
    def A059297_row(n):
        nat = [k for k in (1..n)]
        return bell_transform(n, nat)
    [A059297_row(n)  for n in range(8)] # Peter Luschny, Dec 20 2015

Formula

E.g.f.: exp(x*y*exp(y)). - Vladeta Jovovic, Nov 18 2003
Up to signs, this is the triangle of connection constants expressing the monomials x^n as a linear combination of the Abel polynomials A(k,x) := x*(x+k)^(k-1), 0 <= k <= n. O.g.f. for the k-th column: A(-k,1/x) = x^k/(1-k*x)^(k+1). Cf. A061356. Examples are given below. - Peter Bala, Oct 09 2011
The o.g.f.'s for the diagonals of this triangle are the rational functions occurring in the expansion of the compositional inverse (with respect to x) (x-t*x*exp(x))^-1 = x/(1-t) + 2*t/(1-t)^3*x^2/2! + (3*t+9*t^2)/(1-t)^5*x^3/3! + (4*t+52*t^2+64*t^3)/(1-t)^7*x^4/4! + .... For example, the o.g.f. for second subdiagonal is (3*t+9*t^2)/(1-t)^5 = 3*t + 24*t^2 + 90*t^3 + 240*t^4 + .... See the Bala link. The coefficients of the numerator polynomials are listed in A202017. - Peter Bala, Dec 08 2011
Recurrence equation: T(n+1,k+1) = Sum_{j=0..n-k} (j+1)*binomial(n,j)*T(n-j,k). - Peter Bala, Jan 13 2015
The Bell transform of [1,2,3,...]. See A264428 for the Bell transform. - Peter Luschny, Dec 20 2015

A059298 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 2.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 24, 12, 1, 5, 80, 90, 20, 1, 6, 240, 540, 240, 30, 1, 7, 672, 2835, 2240, 525, 42, 1, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 10, 11520, 262440, 860160, 787500, 272160, 41160
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Comments

The inverse triangle is the signed version 1,-2,1,9,-6,1,.. of triangle A061356. - Peter Luschny, Mar 13 2009
T(n,k) is the sum of the products of the cardinality of the blocks (cells) in the set partitions of {1,2,..,n} into exactly k blocks.
From Peter Bala, Jul 22 2014: (Start)
Exponential Riordan array [(1+x)*exp(x), x*exp(x)].
Let M = A093375, the exponential Riordan array [(1+x)*exp(x), x], and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... - see the Example section. (End)
The Bell transform of n+1. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
1;
2, 1;
3, 6, 1;
4, 24, 12, 1; ...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1          \/1        \/1        \      /1           \
|2  1       ||0 1      ||0 1      |      |2  1        |
|3  4  1    ||0 2 1    ||0 0 1    |... = |3  6  1     |
|4  9  6 1  ||0 3 4 1  ||0 0 2 1  |      |4 24 12  1  |
|5 16 18 8 1||0 4 9 6 1||0 0 3 4 1|      |5 80 90 20 1|
|...        ||...      ||...      |      |...         | (End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297, A059298, A059299, A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248. A093375.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T:= (n, k)-> binomial(n+1,k+1)*(k+1)^(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Georg Fischer, Oct 27 2021
  • Mathematica
    t = Transpose[ Table[ Range[0, 11]! CoefficientList[ Series[(x Exp[x])^n/n!, {x, 0, 11}], x], {n, 11}]]; Table[ t[[n, k]], {n, 2, 11}, {k, n - 1}] // Flatten (* or simply *)
    t[n_, k_] := Binomial[n, k]*k^(n - k); Table[t[n, k], {n, 10}, {k, n}] // Flatten
  • PARI
    for(n=1, 25, for(k=1, n, print1(binomial(n,k)*k^(n-k), ", "))) \\ G. C. Greubel, Jan 05 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: n+1, 10) # Peter Luschny, Jan 18 2016
    

A367274 a(n) = binomial(n, k) * (n - k)^k where k = floor(n/2).

Original entry on oeis.org

1, 1, 2, 6, 24, 90, 540, 2240, 17920, 78750, 787500, 3592512, 43110144, 201885684, 2826399576, 13495173120, 215922769920, 1046465787510, 18836384175180, 92378000000000, 1847560000000000, 9148544655566316, 201267982422458952, 1004605271823089664, 24110526523754151936
Offset: 0

Views

Author

Peter Luschny, Nov 12 2023

Keywords

Crossrefs

Cf. A059299.

Programs

  • Maple
    a := n -> binomial(n, iquo(n, 2))*(n - iquo(n, 2))^iquo(n, 2):
    seq(a(n), n = 0..24);
  • Mathematica
    A367274[n_]:=If[n==0,1,With[{k=Floor[n/2]},Binomial[n,k](n-k)^k]];
    Array[A367274,30,0] (* Paolo Xausa, Nov 29 2023 *)
Showing 1-3 of 3 results.