A059340 Triangle T(n,k) of numbers with e.g.f. exp((exp((1+x)*y)-1)/(1+x)), k=0..n-1.
1, 2, 1, 5, 5, 1, 15, 23, 10, 1, 52, 109, 76, 19, 1, 203, 544, 531, 224, 36, 1, 877, 2876, 3641, 2204, 631, 69, 1, 4140, 16113, 25208, 20089, 8471, 1749, 134, 1, 21147, 95495, 178564, 177631, 100171, 31331, 4838, 263, 1
Offset: 1
Examples
Triangle starts: 1; 2, 1; 5, 5, 1; 15, 23, 10, 1; 52, 109, 76, 19, 1;
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1275
Programs
-
Mathematica
Table[Sum[StirlingS2[n, j]*Binomial[n - j, k], {j, 0, n}], {n, 1, 5}, {k, 0, n - 1}] (* G. C. Greubel, Jan 07 2017 *)
-
Sage
T = lambda n,k: sum(stirling_number2(n,j)*binomial(n-j,k) for j in (0..n)) # Also "for n in (0..11): print([T(n,k) for k in (0..n)])" makes sense. for n in (1..11): print([T(n,k) for k in (0..n-1)]) # Peter Luschny, Aug 06 2015
Formula
T(n,k) = Sum_{i=0..n} stirling2(n, n-i)*binomial(i, k).
T(n,k) = Sum_{i=0..n} stirling2(n, i)*binomial(n-i, k). - Peter Luschny, Aug 06 2015
Comments