cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049020 Triangle of numbers a(n,k), 0 <= k <= n: number of set partitions of {1,2,...,n} in which exactly k of the blocks have been distinguished.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 15, 37, 31, 10, 1, 52, 151, 160, 75, 15, 1, 203, 674, 856, 520, 155, 21, 1, 877, 3263, 4802, 3556, 1400, 287, 28, 1, 4140, 17007, 28337, 24626, 11991, 3290, 490, 36, 1, 21147, 94828, 175896, 174805, 101031, 34671, 6972, 786, 45, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle a(n,k) read by rows; given by [1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
Exponential Riordan array [exp(exp(x)-1), exp(x)-1]. - Paul Barry, Jan 12 2009
Equal to A048993*A007318. - Philippe Deléham, Oct 31 2011
This lower unitriangular array is the L factor in the LU decomposition of the Hankel matrix (Bell(i+j-2))A000110(n).%20The%20U%20factor%20is%20A059098%20(see%20Chamberland,%20p.%201672).%20-%20_Peter%20Bala">i,j >= 1, where Bell(n) = A000110(n). The U factor is A059098 (see Chamberland, p. 1672). - _Peter Bala, Oct 15 2023

Examples

			Triangle begins:
   1;
   1,  1;
   2,  3,  1;
   5, 10,  6,  1;
  15, 37, 31, 10,  1;
  ...
From _Paul Barry_, Jan 12 2009: (Start)
Production array begins
  1, 1;
  1, 2, 1;
  0, 2, 3, 1;
  0, 0, 3, 4, 1;
  0, 0, 0, 4, 5, 1;
  ... (End)
		

Crossrefs

First column gives A000110, second column = A005493.
Third column = A003128, row sums = A001861, A059340.
See A244489 for another version of this triangle.

Programs

  • Maple
    a:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, a(n-1, k-1) +(k+1)*(a(n-1, k) +a(n-1, k+1))))
        end:
    seq(seq(a(n, k), k=0..n), n=0..15);  # Alois P. Heinz, Nov 30 2012
  • Mathematica
    a[n_, k_] = Sum[StirlingS2[n, i]*Binomial[i, k], {i, 0, n}]; Flatten[Table[a[n, k], {n, 0, 9}, {k, 0, n}]]
    (* Jean-François Alcover, Aug 29 2011, after Vladeta Jovovic *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,n!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n),k))
    
  • Sage
    def A049020_triangle(dim):
        M = matrix(ZZ, dim, dim)
        for n in (0..dim-1): M[n, n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n, k] = M[n-1, k-1]+(k+1)*M[n-1, k]+(k+1)*M[n-1, k+1]
        return M
    A049020_triangle(9) # Peter Luschny, Sep 19 2012

Formula

a(n,k) = a(n-1, k-1) + (k+1)*a(n-1, k) + (k+1)*a(n-1, k+1), n >= 1.
a(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(i,k). - Vladeta Jovovic, Jan 27 2001
E.g.f. for the k-th column is (1/k!)*(exp(x)-1)^k*exp(exp(x)-1). - Vladeta Jovovic, Jan 27 2001
G.f.: 1/(1-x-xy-x^2(1+y)/(1-2x-xy-2x^2(1+y)/(1-3x-xy-3x^2(1+y)/(1-4x-xy-4x^2(1+y)/(1-... (continued fraction). - Paul Barry, Apr 29 2009
E.g.f.: exp((y+1)*(exp(x)-1)). - Geoffrey Critzer, Nov 30 2012
Note that A244489 (which is essentially the same triangle) has the formula T(n,k) = Sum_{j=k..n} binomial(n,j)*Stirling_2(j,k)*Bell(n-j), where Bell(n) = A000110(n), for n >= 1, 0 <= k <= n-1. - N. J. A. Sloane, May 17 2016
a(2n,n) = A245109(n). - Alois P. Heinz, Aug 23 2017
Empirical: a(n,k) = p(1^n)[st(1^k)] (see A002872 for notation). - Andrey Zabolotskiy, Oct 17 2017
a(n,k) = Sum_{j=0..k} (-1)^(k-j)*A046716(k, k-j)*Bell(n + j)/k!. - Peter Luschny, Dec 06 2023

Extensions

More terms from James Sellers.
Better definition from Geoffrey Critzer, Nov 30 2012.

A059605 a(n) = (1/3!)*(n^3 + 24*n^2 + 107*n + 90), compare A059604.

Original entry on oeis.org

15, 37, 68, 109, 161, 225, 302, 393, 499, 621, 760, 917, 1093, 1289, 1506, 1745, 2007, 2293, 2604, 2941, 3305, 3697, 4118, 4569, 5051, 5565, 6112, 6693, 7309, 7961, 8650, 9377, 10143, 10949, 11796, 12685, 13617, 14593, 15614, 16681, 17795, 18957
Offset: 0

Views

Author

Vladeta Jovovic, Jan 29 2001

Keywords

Crossrefs

Programs

  • Magma
    [(1/6)*(n^3+24*n^2+107*n+90) : n in [0..50]]; // Vincenzo Librandi, Nov 13 2011

Formula

G.f.: (15 - 23*x + 10*x^2 - x^3)/(1-x)^4, compare A059340.

Extensions

More terms from James Sellers, Feb 01 2001

A059364 Triangle T(n,k)=Sum_{i=0..n} |stirling1(n,n-i)|*binomial(i,k), k=0..n-1.

Original entry on oeis.org

1, 2, 1, 6, 7, 2, 24, 46, 29, 6, 120, 326, 329, 146, 24, 720, 2556, 3604, 2521, 874, 120, 5040, 22212, 40564, 39271, 21244, 6084, 720, 40320, 212976, 479996, 598116, 444849, 197380, 48348, 5040, 362880, 2239344, 6023772, 9223012, 8788569
Offset: 1

Views

Author

Vladeta Jovovic, Jan 28 2001

Keywords

Comments

Sum_{k=0..n-1} T(n,k)=(2*n-1)!!.
Alternating row sums = 1. - Gerald McGarvey, Aug 06 2006
Essentially triangle given by [1,1,2,2,3,3,4,4,5,5,6,6,...] DELTA [0,1,1,2,2,3,3,4,4,5,5,...] = [1;1,0;2,1,0;6,7,2,0;24,46,29,6,0;...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 20 2006

Examples

			[1],
[2, 1],
[6, 7, 2],
[24, 46, 29, 6],
[120, 326, 329, 146, 24],
[720, 2556, 3604, 2521, 874, 120], ...
2+1=3!!, 6+7+2=5!!, 24+46+29+6=7!!, 120+326+329+146+24=9!!.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n, n - j]]*Binomial[j, k], {j, 0, n}], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(polcoeff((1-x-x*y+x*O(x^n))^(-1/(1+y)),n),k))
    
  • Sage
    def A059364(n,k): return add(stirling_number1(n,n-i)*binomial(i,k) for i in (0..n))
    for n in (1..5): [A059364(n,k) for k in (0..n-1)]  # Peter Luschny, May 12 2013

Formula

For n>1, T(n,k) = (n-1)*T(n-1,k-1) + n*T(n-1,k) (assuming any T(i,j) outside the triangle = 0). - Gerald McGarvey, Aug 06 2006
Showing 1-3 of 3 results.