A059606 Expansion of (1/2)*(exp(2*x)-1)*exp(exp(x)-1).
0, 1, 4, 16, 68, 311, 1530, 8065, 45344, 270724, 1709526, 11376135, 79520644, 582207393, 4453142140, 35500884556, 294365897104, 2533900264547, 22604669612078, 208656457858161, 1990060882027600
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Vladeta Jovovic, More information.
Programs
-
Maple
s := series(1/2*(exp(2*x)-1)*exp(exp(x)-1), x, 21): for i from 0 to 20 do printf(`%d,`,i!*coeff(s,x,i)) od:
-
Mathematica
With[{nn=20},CoefficientList[Series[((Exp[2x]-1)Exp[Exp[x]-1])/2,{x,0,nn}] ,x] Range[0,nn]!] (* Harvey P. Dale, Nov 10 2011 *)
Formula
a(n) = Sum_{i=0..n} Stirling2(n, i)*binomial(i+1, 2).
a(n) = (1/2)*(Bell(n+2)-Bell(n+1)-Bell(n)). - Vladeta Jovovic, Sep 23 2003
G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, Jun 19 2018
a(n) ~ n^2 * Bell(n) / (2*LambertW(n)^2) * (1 - LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
Comments