A035098
Near-Bell numbers: partitions of an n-multiset with multiplicities 1, 1, 1, ..., 1, 2.
Original entry on oeis.org
1, 2, 4, 11, 36, 135, 566, 2610, 13082, 70631, 407846, 2504071, 16268302, 111378678, 800751152, 6027000007, 47363985248, 387710909055, 3298841940510, 29119488623294, 266213358298590, 2516654856419723, 24566795704844210
Offset: 1
a(3)=4 because there are 4 ways to partition the multiset {1,2,2} (with multiplicities {1,2}): {{1,2,2}} {{1,2},{2}} {{1},{2,2}} {{1},{2},{2}}.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- Alois P. Heinz, Table of n, a(n) for n = 1..576 (first 200 terms from Vincenzo Librandi)
- M. Griffiths, Generalized Near-Bell Numbers, JIS 12 (2009) 09.5.7.
- M. Griffiths, I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- Martin Griffiths, Generating Functions for Extended Stirling Numbers of the First Kind, Journal of Integer Sequences, 17 (2014), #14.6.4.
-
with(combinat): a:= n-> floor(1/2*(bell(n-2)+bell(n-1)+bell(n))): seq(a(n), n=1..25); # Zerinvary Lajos, Oct 07 2007
-
f[n_] := Sum[ StirlingS2[n, k] ((k + 1) (k + 2)/2 + 1), {k, 0, n}]; Array[f, 22, 0]
f[n_] := (BellB[n] + BellB[n + 1] + BellB[n + 2])/2; Array[f, 22, 0]
Range[0, 21]! CoefficientList[ Series[ (1 + Exp@ x)^2/2 Exp[ Exp@ x - 1], {x, 0, 21}], x] (* 3 variants by Robert G. Wilson v, Jan 13 2011 *)
Join[{1},Total[#]/2&/@Partition[BellB[Range[0,30]],3,1]] (* Harvey P. Dale, Jan 02 2019 *)
A087648
a(n) = (1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)).
Original entry on oeis.org
1, 3, 9, 31, 120, 514, 2407, 12205, 66491, 386699, 2388096, 15589732, 107165081, 773106715, 5836100685, 45981026703, 377230766908, 3215977070706, 28437411817135, 260380616093533, 2464930698184351, 24091925888687459, 242802079705721156, 2520198597834860148
Offset: 0
-
[(1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
-
f[0]=1; f[n_] := Sum[ StirlingS2[n, k]*Binomial[k+2, k ], {k, 1, n}]; Table[ f[n], {n, 0, 20}] (* Zerinvary Lajos, Mar 31 2007 *)
(#[[3]]+#[[2]]-#[[1]])/2&/@Partition[BellB[Range[0,30]],3,1] (* Harvey P. Dale, Jul 20 2021 *)
A059604
Coefficients of polynomials (n-1)!*P(n,k), P(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(k+i-1,k).
Original entry on oeis.org
1, 1, 2, 1, 9, 10, 1, 24, 107, 90, 1, 50, 575, 1750, 1248, 1, 90, 2135, 16050, 38244, 24360, 1, 147, 6265, 95445, 537334, 1078728, 631440, 1, 224, 15610, 424340, 4734289, 21569996, 38105220, 20865600, 1, 324, 34482, 1529640, 30128049
Offset: 1
[1],
[1, 2],
[1, 9, 10],
[1, 24, 107, 90],
[1, 50, 575, 1750, 1248],
[1, 90, 2135, 16050, 38244, 24360],
[1, 147, 6265, 95445, 537334, 1078728, 631440],
...
P(2,k) = k + 2,
P(3,k) = (1/2!)*(k^2 + 9*k + 10),
P(4,k) = (1/3!)*(k^3 + 24*k^2 + 107*k + 90).
-
P := (n, k) -> (n-1)!*add(Stirling2(n,i)*binomial(k+i-1,k), i=0..n):
for n from 1 to 8 do seq(coeff(expand(P(n,x)),x,n-k), k=1..n) od; # Peter Luschny, Nov 07 2018
-
row[n_] := (n-1)! CoefficientList[Sum[StirlingS2[n,i] Binomial[k+i-1,k] // FunctionExpand, {i,0,n}], k] // Reverse;
Array[row,10] // Flatten (* Jean-François Alcover, Jun 03 2019 *)
-
row(n)={Vec((n-1)!*sum(i=0, n, stirling(n,i,2)*binomial(x+i-1,i-1)))}
for(n=1, 10, print(row(n))) \\ Andrew Howroyd, Nov 07 2018
A059605
a(n) = (1/3!)*(n^3 + 24*n^2 + 107*n + 90), compare A059604.
Original entry on oeis.org
15, 37, 68, 109, 161, 225, 302, 393, 499, 621, 760, 917, 1093, 1289, 1506, 1745, 2007, 2293, 2604, 2941, 3305, 3697, 4118, 4569, 5051, 5565, 6112, 6693, 7309, 7961, 8650, 9377, 10143, 10949, 11796, 12685, 13617, 14593, 15614, 16681, 17795, 18957
Offset: 0
A087649
a(n) = (1/2)*(Bell(n+2)-Bell(n+1)+Bell(n)).
Original entry on oeis.org
1, 2, 6, 21, 83, 363, 1733, 8942, 49484, 291871, 1825501, 12054705, 83734241, 609851830, 4644041462, 36883843101, 304846039251, 2616765134351, 23286746418237, 214489200063218, 2041785040262972, 20060079966396887, 203156789589084133, 2118391734395139205
Offset: 0
A323618
Expansion of e.g.f. (1 + x)*log(1 + x)*(2 + log(1 + x))/2.
Original entry on oeis.org
0, 1, 2, -1, 1, -1, -2, 34, -324, 2988, -28944, 300816, -3371040, 40710240, -528439680, 7348717440, -109109064960, 1723814265600, -28888702617600, 512030734387200, -9572240647065600, 188274945999974400, -3887144020408320000, 84062926436751360000, -1900475323780239360000
Offset: 0
-
[(&+[StirlingFirst(n,k)*Binomial(k+1,2): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 07 2019
-
f:= gfun:-rectoproc({a(n) = (5-2*n)*a(n-1) - (n-3)^2*a(n-2), a(0)=0, a(1)=1, a(2)=2, a(3)=-1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jan 20 2019
-
nmax = 24; CoefficientList[Series[(1 + x) Log[1 + x] (2 + Log[1 + x])/2, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k (k + 1)/2, {k, 0, n}], {n, 0, 24}]
Join[{0,1,2,-1}, RecurrenceTable[{a[n]==(5-2*n)*a[n-1]-(n-3)^2*a[n-2], a[2]==2, a[3]==-1}, a, {n,4,25}]] (* G. C. Greubel, Feb 07 2019 *)
-
{a(n) = sum(k=0,n, stirling(n,k,1)*binomial(k+1,2))};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 07 2019
-
[sum((-1)^(k+n)*stirling_number1(n,k)*binomial(k+1,2) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Feb 07 2019
A372624
Expansion of e.g.f. exp(1 - exp(x)) * (exp(x) - 1)^2 / 2.
Original entry on oeis.org
0, 0, 1, 0, -5, -10, 16, 154, 365, -750, -9749, -35222, 20956, 1013220, 6007821, 10272092, -129948837, -1405396426, -6318145964, 7407235766, 371429230721, 3172609248526, 11070816858267, -73488239926510, -1500342260080360, -11917913896465720, -31231507292803479
Offset: 0
-
nmax = 26; CoefficientList[Series[Exp[1 - Exp[x]] (Exp[x] - 1)^2/2, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^k StirlingS2[n, k] Binomial[k, 2], {k, 0, n}], {n, 0, 26}]
Showing 1-7 of 7 results.
Comments