cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A035098 Near-Bell numbers: partitions of an n-multiset with multiplicities 1, 1, 1, ..., 1, 2.

Original entry on oeis.org

1, 2, 4, 11, 36, 135, 566, 2610, 13082, 70631, 407846, 2504071, 16268302, 111378678, 800751152, 6027000007, 47363985248, 387710909055, 3298841940510, 29119488623294, 266213358298590, 2516654856419723, 24566795704844210
Offset: 1

Views

Author

Keywords

Comments

A035098 and A000070 are near the two ends of a spectrum. Another way to look at A000070 is as the number of partitions of an n-multiset with multiplicities n-1, 1.
The very ends are the number of partitions and the Stirling numbers of the second kind, which count the n-multiset partitions with multiplicities n and 1,1,1,...,1, respectively.
Intermediate sequences are the number of ways of partitioning an n-multiset with multiplicities some partition of n.

Examples

			a(3)=4 because there are 4 ways to partition the multiset {1,2,2} (with multiplicities {1,2}): {{1,2,2}} {{1,2},{2}} {{1},{2,2}} {{1},{2},{2}}.
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018

Crossrefs

Row sums of A241500.
Column 1 of array in A322765.
Row n=2 of A346426.

Programs

  • Maple
    with(combinat): a:= n-> floor(1/2*(bell(n-2)+bell(n-1)+bell(n))): seq(a(n), n=1..25); # Zerinvary Lajos, Oct 07 2007
  • Mathematica
    f[n_] := Sum[ StirlingS2[n, k] ((k + 1) (k + 2)/2 + 1), {k, 0, n}]; Array[f, 22, 0]
    f[n_] := (BellB[n] + BellB[n + 1] + BellB[n + 2])/2; Array[f, 22, 0]
    Range[0, 21]! CoefficientList[ Series[ (1 + Exp@ x)^2/2 Exp[ Exp@ x - 1], {x, 0, 21}], x] (* 3 variants by Robert G. Wilson v, Jan 13 2011 *)
    Join[{1},Total[#]/2&/@Partition[BellB[Range[0,30]],3,1]] (* Harvey P. Dale, Jan 02 2019 *)

Formula

Sum_{k=0..n} Stirling2(n, k)*((k+1)*(k+2)/2+1). E.g.f.: 1/2*(1+exp(x))^2*exp(exp(x)-1). (1/2)*(Bell(n)+Bell(n+1)+Bell(n+2)). - Vladeta Jovovic, Sep 23 2003 [for offset -1]
a(n) ~ Bell(n)/2 * (1 + LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021

Extensions

More terms from Vladeta Jovovic, Sep 23 2003

A087648 a(n) = (1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)).

Original entry on oeis.org

1, 3, 9, 31, 120, 514, 2407, 12205, 66491, 386699, 2388096, 15589732, 107165081, 773106715, 5836100685, 45981026703, 377230766908, 3215977070706, 28437411817135, 260380616093533, 2464930698184351, 24091925888687459, 242802079705721156, 2520198597834860148
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2003

Keywords

Comments

Sum of last number in all set partitions of n+1. E.g. The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}, so a(2) = 1+2+1+2+3 = 9. - Franklin T. Adams-Watters, Jun 07 2006
Number of partitions of the (n+2)-multiset {0,0,1,2,...,n} into distinct multisets. Also number of factorizations of 2 * Product_{i=1..n+1} prime(i) into distinct factors. - Alois P. Heinz, Jul 30 2021

Crossrefs

Main diagonal of A120057, row sums of A120095.
Column 1 of array in A322770.
Row n=2 of A346520.

Programs

  • Magma
    [(1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
  • Mathematica
    f[0]=1; f[n_] := Sum[ StirlingS2[n, k]*Binomial[k+2, k ], {k, 1, n}]; Table[ f[n], {n, 0, 20}] (* Zerinvary Lajos, Mar 31 2007 *)
    (#[[3]]+#[[2]]-#[[1]])/2&/@Partition[BellB[Range[0,30]],3,1] (* Harvey P. Dale, Jul 20 2021 *)

A059604 Coefficients of polynomials (n-1)!*P(n,k), P(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(k+i-1,k).

Original entry on oeis.org

1, 1, 2, 1, 9, 10, 1, 24, 107, 90, 1, 50, 575, 1750, 1248, 1, 90, 2135, 16050, 38244, 24360, 1, 147, 6265, 95445, 537334, 1078728, 631440, 1, 224, 15610, 424340, 4734289, 21569996, 38105220, 20865600, 1, 324, 34482, 1529640, 30128049
Offset: 1

Views

Author

Vladeta Jovovic, Jan 29 2001

Keywords

Examples

			[1],
[1, 2],
[1, 9, 10],
[1, 24, 107, 90],
[1, 50, 575, 1750, 1248],
[1, 90, 2135, 16050, 38244, 24360],
[1, 147, 6265, 95445, 537334, 1078728, 631440],
...
P(2,k) = k + 2,
P(3,k) = (1/2!)*(k^2 + 9*k + 10),
P(4,k) = (1/3!)*(k^3 + 24*k^2 + 107*k + 90).
		

Crossrefs

Programs

  • Maple
    P := (n, k) -> (n-1)!*add(Stirling2(n,i)*binomial(k+i-1,k), i=0..n):
    for n from 1 to 8 do seq(coeff(expand(P(n,x)),x,n-k), k=1..n) od; # Peter Luschny, Nov 07 2018
  • Mathematica
    row[n_] := (n-1)! CoefficientList[Sum[StirlingS2[n,i] Binomial[k+i-1,k] // FunctionExpand, {i,0,n}], k] // Reverse;
    Array[row,10] // Flatten (* Jean-François Alcover, Jun 03 2019 *)
  • PARI
    row(n)={Vec((n-1)!*sum(i=0, n, stirling(n,i,2)*binomial(x+i-1,i-1)))}
    for(n=1, 10, print(row(n))) \\ Andrew Howroyd, Nov 07 2018

A059605 a(n) = (1/3!)*(n^3 + 24*n^2 + 107*n + 90), compare A059604.

Original entry on oeis.org

15, 37, 68, 109, 161, 225, 302, 393, 499, 621, 760, 917, 1093, 1289, 1506, 1745, 2007, 2293, 2604, 2941, 3305, 3697, 4118, 4569, 5051, 5565, 6112, 6693, 7309, 7961, 8650, 9377, 10143, 10949, 11796, 12685, 13617, 14593, 15614, 16681, 17795, 18957
Offset: 0

Views

Author

Vladeta Jovovic, Jan 29 2001

Keywords

Crossrefs

Programs

  • Magma
    [(1/6)*(n^3+24*n^2+107*n+90) : n in [0..50]]; // Vincenzo Librandi, Nov 13 2011

Formula

G.f.: (15 - 23*x + 10*x^2 - x^3)/(1-x)^4, compare A059340.

Extensions

More terms from James Sellers, Feb 01 2001

A087649 a(n) = (1/2)*(Bell(n+2)-Bell(n+1)+Bell(n)).

Original entry on oeis.org

1, 2, 6, 21, 83, 363, 1733, 8942, 49484, 291871, 1825501, 12054705, 83734241, 609851830, 4644041462, 36883843101, 304846039251, 2616765134351, 23286746418237, 214489200063218, 2041785040262972, 20060079966396887, 203156789589084133, 2118391734395139205
Offset: 0

Views

Author

Vladeta Jovovic, Sep 23 2003

Keywords

Crossrefs

Programs

  • Magma
    [(1/2)*(Bell(n+2)-Bell(n+1)+Bell(n)): n in [0..30]]; // Vincenzo Librandi, Nov 13 2011

Formula

G.f.: (1-x+x^2)/(2*x*Q(0)) - 1/(2*x) + 1/2, where Q(k)= 1 - x - x/(1 - x*(2*k+1)/(1 - x - x/(1 - x*(2*k+2)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
E.g.f.: exp(exp(x) - 1) * (exp(2*x) + 1) / 2. - Ilya Gutkovskiy, Aug 09 2021

A323618 Expansion of e.g.f. (1 + x)*log(1 + x)*(2 + log(1 + x))/2.

Original entry on oeis.org

0, 1, 2, -1, 1, -1, -2, 34, -324, 2988, -28944, 300816, -3371040, 40710240, -528439680, 7348717440, -109109064960, 1723814265600, -28888702617600, 512030734387200, -9572240647065600, 188274945999974400, -3887144020408320000, 84062926436751360000, -1900475323780239360000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 20 2019

Keywords

Crossrefs

Programs

  • Magma
    [(&+[StirlingFirst(n,k)*Binomial(k+1,2): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 07 2019
    
  • Maple
    f:= gfun:-rectoproc({a(n) =  (5-2*n)*a(n-1) - (n-3)^2*a(n-2), a(0)=0, a(1)=1, a(2)=2, a(3)=-1}, a(n), remember):
    map(f, [$0..30]); # Robert Israel, Jan 20 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + x) Log[1 + x] (2 + Log[1 + x])/2, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] k (k + 1)/2, {k, 0, n}], {n, 0, 24}]
    Join[{0,1,2,-1}, RecurrenceTable[{a[n]==(5-2*n)*a[n-1]-(n-3)^2*a[n-2], a[2]==2, a[3]==-1}, a, {n,4,25}]] (* G. C. Greubel, Feb 07 2019 *)
  • PARI
    {a(n) = sum(k=0,n, stirling(n,k,1)*binomial(k+1,2))};
    vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 07 2019
    
  • Sage
    [sum((-1)^(k+n)*stirling_number1(n,k)*binomial(k+1,2) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Feb 07 2019

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*A000217(k).
a(n) ~ -(-1)^n * log(n) * n! / n^2 * (1 + (gamma - 2)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 20 2019
a(n) = (5-2*n)*a(n-1) - (n-3)^2*a(n-2) for n >= 4. - Robert Israel, Jan 20 2019

A372624 Expansion of e.g.f. exp(1 - exp(x)) * (exp(x) - 1)^2 / 2.

Original entry on oeis.org

0, 0, 1, 0, -5, -10, 16, 154, 365, -750, -9749, -35222, 20956, 1013220, 6007821, 10272092, -129948837, -1405396426, -6318145964, 7407235766, 371429230721, 3172609248526, 11070816858267, -73488239926510, -1500342260080360, -11917913896465720, -31231507292803479
Offset: 0

Views

Author

Ilya Gutkovskiy, May 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Exp[1 - Exp[x]] (Exp[x] - 1)^2/2, {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^k StirlingS2[n, k] Binomial[k, 2], {k, 0, n}], {n, 0, 26}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n,k) * binomial(k,2).
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(k,2) * A000587(n-k).
Showing 1-7 of 7 results.