A059387 Jordan function J_n(6) (see A059379).
0, 2, 24, 182, 1200, 7502, 45864, 277622, 1672800, 10057502, 60406104, 362617862, 2176246800, 13059091502, 78359364744, 470170602902, 2821066795200, 16926530173502, 101559568985784, 609358577224742, 3656154952230000
Offset: 0
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Bo He and Chang Liu, The diophantine equation (2^k-1)*(3^k-1)=x^n, arXiv preprint (2025). arXiv:2501.04050 [math.NT].
- L. Szalay, On the Diophantine equation (2n - 1)(3n - 1) = x^2, Publicationes Mathematicae Debrecen, 57(1-2) (2000), pp. 1-9.
- Index entries for linear recurrences with constant coefficients, signature (12,-47,72,-36).
Programs
-
Magma
[(2^n-1)*(3^n-1): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
Maple
A059387:=n->(2^n-1)*(3^n-1); seq(A059387(n), n=0..50); # Wesley Ivan Hurt, Nov 14 2013
-
Mathematica
Table[(2^n-1)*(3^n-1),{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)
-
PARI
for(n=0,30, print1((2^n-1)*(3^n-1), ", ")) \\ G. C. Greubel, Jan 29 2018
Formula
G.f.: -2*x*(6*x^2-1) / ((x-1)*(2*x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Dec 06 2012
a(n-1) = (limit of (Sum_{k>=0} (1/(6*k + 1)^s - 1/(6*k + 2)^s - 2/(6*k + 3)^s - 1/(6*k + 4)^s + 1/(6*k + 5)^s + 2/(6*k + 6)^s) as s -> n))/zeta(n)*6^(n - 1). - Mats Granvik, Nov 14 2013
a(n) = 2*A160869(n). - R. J. Mathar, Nov 23 2018
Comments