cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059398 Row sums of triangle in A059397.

Original entry on oeis.org

1, 2, 6, 17, 51, 154, 473, 1464, 4568, 14332, 45187, 143024, 454217, 1446604, 4618576, 14777451, 47371177, 152110326, 489165277, 1575211177, 5078690936, 16392526502, 52963765321, 171282782902, 554393341371, 1795821017014
Offset: 0

Views

Author

N. J. A. Sloane, Jan 29 2001

Keywords

Comments

Number of paths in the first quadrant from (0,0) to the line x=n, consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0) (in other words, left factors of the paths in A128720). Example: a(2)=6 because we have hh, H, UD, hU, Uh and UU. Row sums of triangle in A132276. - Emeric Deutsch, Sep 03 2007
Row sums of the Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-x^2-sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^2) (A132276). - Emanuele Munarini, May 05 2011

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!(Sqrt((1+x-x^2)/(1-3*x-x^2))-1)/(2*x)) // G. C. Greubel, Jan 29 2018
  • Maple
    g:=(1/2)*(sqrt((1+x-x^2)/(1-3*x-x^2))-1)/x: gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=0..25); # Emeric Deutsch, Sep 03 2007
  • Mathematica
    Table[Sum[Binomial[2k,k](-1)^(n-k+1)Sum[Binomial[i+k-1,i]Binomial[i,n-k-i+1],{i,0,n-k+1}],{k,0,n+1}]/2,{n,0,28}] (* Emanuele Munarini, May 05 2011 *)
    With[{nn = 50}, CoefficientList[Series[(Sqrt[(1 + x - x^2)/(1 - 3*x - x^2)] - 1)/x/2, {x, 0, nn}], x]] (* G. C. Greubel, Jan 29 2018 *)
  • Maxima
    makelist(sum(binomial(2*k,k)*(-1)^(n-k+1)*sum(binomial(i+k-1,i)*binomial(i,n-k-i+1),i,0,n-k+1),k,0,n+1)/2,n,0,28); /* Emanuele Munarini, May 05 2011 */
    
  • PARI
    x='x+O('x^30); Vec((sqrt((1+x-x^2)/(1-3*x-x^2))-1)/x/2) \\ G. C. Greubel, Jan 29 2018
    

Formula

G.f.: (sqrt((1+x-x^2)/(1-3*x-x^2))-1)/x/2. - Vladeta Jovovic, Jan 20 2004
a(n) = (1/2)*sum(binomial(2*k,k)*(-1)^(n-k+1)*sum(binomial(i+k-1,i)*binomial(i,n-k-i+1),i=0..n-k+1),k=0..n+1). - Emanuele Munarini, May 05 2011

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001