cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A180049 Coefficient triangle of the numerators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... .

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 0, 7, 0, 1, 15, 0, 12, 0, 1, 0, 57, 0, 18, 0, 1, 105, 0, 141, 0, 25, 0, 1, 0, 561, 0, 285, 0, 33, 0, 1, 945, 0, 1830, 0, 510, 0, 42, 0, 1, 0, 6555, 0, 4680, 0, 840, 0, 52, 0, 1, 10395, 0, 26685, 0, 10290, 0, 1302, 0, 63, 0, 1, 0, 89055, 0, 82845, 0, 20370, 0, 1926, 0, 75, 0, 1
Offset: 1

Views

Author

Wouter Meeussen, Aug 08 2010

Keywords

Comments

Equivalence to the recurrence formula needs formal proof. This continued fraction converges to 0.525135276160981... for w=1. A conjecture by Ramanujan puts this equal to -1 + 1/(sqrt(e*Pi/2) - Sum_{k>=1} 1/(2k-1)!!). Row sums equal A059480.

Examples

			The numerator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 57w + 18w^3 + w^5.
From _Philippe Deléham_, Nov 06 2013: (Start)
Triangle begins:
      1;
      0,    1;
      3,    0,     1;
      0,    7,     0,    1;
     15,    0,    12,    0,     1;
      0,   57,     0,   18,     0,   1;
    105,    0,   141,    0,    25,   0,    1;
      0,  561,     0,  285,     0,  33,    0,  1;
    945,    0,  1830,    0,   510,   0,   42,  0,  1;
      0, 6555,     0, 4680,     0, 840,    0, 52,  0, 1;
  10395,    0, 26685,    0, 10290,   0, 1302,  0, 63, 0, 1;
  ... (End)
[extended by _M. F. Hasler_, Oct 21 2014]
		

Crossrefs

Programs

  • Mathematica
    Table[ CoefficientList[ Numerator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 2, 16} ] or equivalently Clear[ b ]; b[ 0 ]=1; b[ 1 ]=w; b[ n_ ]:=b[ n ] = w b[ n-1 ]+(n+1) b[ n-2 ]; Table[ CoefficientList[ b[ k ]//Expand, w ], {k, 0, 14} ]
  • PARI
    t=x-w;for(n=1,12,t=substpol(t,x,w+n/x);print(Vecrev(numerator(substpol(t,x,w))))) \\ M. F. Hasler, Oct 21 2014

Formula

b(0)=1; b(1)=w; b(n) = w*b(n-1) + (n+1)*b(n-2) (conjecture).

A070895 Triangle read by rows where T(n+1,k)=T(n,k)+n*T(n-1,k) starting with T(n,n)=1 and T(n,k)=0 if n

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 10, 6, 4, 1, 1, 26, 18, 8, 5, 1, 1, 76, 48, 28, 10, 6, 1, 1, 232, 156, 76, 40, 12, 7, 1, 1, 764, 492, 272, 110, 54, 14, 8, 1, 1, 2620, 1740, 880, 430, 150, 70, 16, 9, 1, 1, 9496, 6168, 3328, 1420, 636, 196, 88, 18, 10, 1, 1, 35696, 23568
Offset: 0

Views

Author

Henry Bottomley, May 23 2002

Keywords

Comments

For n>k+1, T(n,k) is a multiple of k+2.
Eigentriangle of inverse of (-1)^(n-k)*A094587. Row sums are A187044. - Paul Barry, Mar 02 2011

Examples

			Rows start: 1; 1,1; 2,1,1; 4,3,1,1; 10,6,4,1,1; etc.
Triangle begins
1,
1, 1,
2, 1, 1,
4, 3, 1, 1,
10, 6, 4, 1, 1,
26, 18, 8, 5, 1, 1,
76, 48, 28, 10, 6, 1, 1,
232, 156, 76, 40, 12, 7, 1, 1
Production matrix begins
1, 1,
1, 0, 1,
1, 1, 0, 1,
2, 1, 1, 0, 1,
4, 3, 1, 1, 0, 1,
10, 6, 4, 1, 1, 0, 1,
26, 18, 8, 5, 1, 1, 0, 1,
76, 48, 28, 10, 6, 1, 1, 0, 1,
232, 156, 76, 40, 12, 7, 1, 1, 0, 1
Inverse begins
1,
-1, 1,
-1, -1, 1,
0, -2, -1, 1,
0, 0, -3, -1, 1,
0, 0, 0, -4, -1, 1,
0, 0, 0, 0, -5, -1, 1,
0, 0, 0, 0, 0, -6, -1, 1
- _Paul Barry_, Mar 02 2011
		

Crossrefs

Columns include A000085, A000932, A059480. Right hand columns effectively include A000012 (twice), A000027, A005843, A028552. Cf. A062323 for a triangle with similar formulas.

Formula

T(n, k+1)=(T(n, k-1)-T(n-1, k))/k for 0

A247376 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 2, 2, 3, 5, 5, 15, 8, 8, 35, 33, 13, 80, 131, 48, 21, 171, 409, 279, 34, 355, 1180, 1375, 384, 55, 715, 3128, 5335, 2895, 89, 1410, 7858, 18510, 17029, 3840, 144, 2730, 18851, 58253, 78609, 35685, 233, 5208, 43629, 171059, 317758, 243873, 46080, 377, 9810
Offset: 0

Author

Clark Kimberling, Oct 23 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 1 + (2*x + 1)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A059480(n+1) for n >= 0.
(Column 1) is essentially A000045 (Fibonacci numbers).

Crossrefs

Programs

  • Mathematica
    z = 15; f[x_, n_] := 1 + (2 x + 1)/f[x, n - 1]; f[x_, 1] = 1;
    t = Table[Factor[f[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A247376 array *)
    Flatten[CoefficientList[u, x]] (* A247376 sequence *)
  • PARI
    rown(n) = if (n==0, 1, 1 + (2*x+1)/rown(n-1));
    tabl(nn) = for (n=0, nn, print(Vecrev(numerator(rown(n))))); \\ Michel Marcus, Oct 28 2014

Formula

f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (2 + 2 x)/1, so that p(1,x) = 2 + 2 x;
f(2,x) = (3 + 5 x)/(2 + 2 x), so that p(2,x) = 3 + 5 x.
First 6 rows of the triangle of coefficients:
1
2 2
3 5
5 15 8
8 35 33
13 80 131 48

A371943 Number of permutations that end with a consecutive pattern 123, and avoid consecutive patterns 123 and 213 elsewhere.

Original entry on oeis.org

0, 0, 0, 1, 2, 10, 28, 116, 388, 1588, 5960, 25168, 102856, 453608, 1985008, 9163360, 42486128, 205065136, 1000056928, 5035366208, 25689681760, 134588839648, 715328668736, 3889568161408, 21463055829568, 120839175460160, 690344333849728, 4015753752384256
Offset: 0

Author

Yixin Lin, Apr 13 2024

Keywords

Comments

(This can be proved by observing the possible positions of n.)

Examples

			For n=0, 1, 2, there are no permutations ending with 123. Hence, a(0)=a(1)=a(2)=0. For n=3, a(3)=1 since 123 is the only permutation that ends with 123. For n=4, a(4)=2 with qualified permutations 3124, 4123. For n=5, a(5)=10 with qualified permutations 14235, 15234, 24135, 25134, 34125, 35124, 43125, 45123, 53124, 54123.
		

Crossrefs

Cf. A059480.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 0, `if`(n=3, 1,
          2*a(n-1)+2*(n-2)*(a(n-2)-a(n-3))-(n-2)*(n-3)*a(n-4)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 13 2024
  • Mathematica
    a[n_]:=a[n]=If[n<3, 0, If[n==3, 1, 2*a[n-1]+2*(n-2)*(a[n-2]-a[n-3])-(n-2)*(n-3)*a[n-4]]]; Table[a[n], {n,0,27}] (* Stefano Spezia, Apr 13 2024 *)
    RecurrenceTable[{a[n] == 2*a[n-1] + 2*(n-2)*(a[n-2] - a[n-3]) - (n-2)*(n-3)*a[n-4], a[0] == 0, a[1] == 0, a[2] == 0, a[3] == 1}, a, {n, 0, 30}] (* Vaclav Kotesovec, Apr 14 2024 *)
    nmax = 30; FullSimplify[CoefficientList[Series[-1 + E^(x*(2 + x)/2) * (1 + x) + E^((1 + x)^2/2) * Sqrt[Pi/2] * (2 + x)*(Erf[1/Sqrt[2]] - Erf[(1 + x)/Sqrt[2]]), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Apr 14 2024 *)
  • Python
    def aList(len):
        b = [0, 0, 0, 1, 4]
        a = [0, 0, 0, 1, 2]
        for i in range(4, len):
            b.append(b[i] + i * b[i - 1])
            a.append(a[i] + i * a[i - 1] + b[i])
        return a
    print(aList(27))

Formula

a(0)=a(1)=a(2)=0, a(3)=1, a(4)=2; a(n) = a(n-1)+(n-1)*a(n-2)+b(n-1), where b(n) = b(n-1)+(n-1)*b(n-2) is the same sequence as A059480, up to the first initial terms. Here, our b(n) has initial terms 0, 0, 0, 1, 4.
From Vaclav Kotesovec, Apr 14 2024: (Start)
a(n) ~ c * n^((n+1)/2) * exp(sqrt(n) - n/2), where c = exp(-1/4) / sqrt(2) - exp(1/4) * sqrt(Pi) * erfc(1/sqrt(2)) / 2 = 0.189615662815288097469466802437...
E.g.f.: -1 + exp(x*(2 + x)/2) * (1 + x) + exp((1 + x)^2/2) * sqrt(Pi/2) * (2 + x) * (erf(1/sqrt(2)) - erf((1 + x)/sqrt(2))). (End)
Showing 1-4 of 4 results.