cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059539 Beatty sequence for 3^(1/3).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059540.
Partial sums of A081129.
Cf. A002581.

Programs

  • Mathematica
    Floor[Range[100]*CubeRoot[3]] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=3^(1/3); for (n = 1, 2000, write("b059539.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 27 2009
    
  • Python
    from sympy import integer_nthroot
    def A059539(n): return integer_nthroot(3*n**3,3)[0] # Chai Wah Wu, Mar 16 2021

Formula

a(n) = floor(n*A002581). - R. J. Mathar, Apr 12 2019

A249179 First row of spectral array W(3^(1/3)).

Original entry on oeis.org

1, 3, 4, 9, 12, 29, 41, 94, 135, 306, 441, 997, 1437, 3251, 4688, 10602, 15290, 34574, 49864, 112751, 162615, 367699, 530313, 1199127, 1729440, 3910553, 5639993, 12752965
Offset: 1

Views

Author

Colin Barker, Dec 03 2014

Keywords

Comments

3^(1/3) = 1.442249570307408382321638310780109588391869253499350577546416...
The sequence is generated from the Beatty sequence (A059539) and from the complement of the Beatty sequence (A059540) for 3^(1/3).

Crossrefs

Programs

  • PARI
    \\ Row i of the generalized Wythoff array W(h),
    \\   where h is an irrational number between 1 and 2,
    \\   and m is the number of terms in the vectors b and c.
    row(h, i, m) = {
      if(h<=1 || h>=2, print("Invalid value for h"); return);
      my(
        b=vector(m, n, floor(n*h)),       \\ Beatty sequence for h
        c=vector(m, n, floor(n*h/(h-1))), \\ Complement of b
        w=[b[b[i]], c[b[i]]],
        j=3
      );
      while(1,
        if(j%2==1,
          if(w[j-1]<=#b, w=concat(w, b[w[j-1]]), return(w))
        ,
          if(w[j-2]<=#c, w=concat(w, c[w[j-2]]), return(w))
        );
        j++
      )
    }
    allocatemem(10^9)
    default(realprecision, 100)
    row(3^(1/3), 1, 10^7)
Showing 1-2 of 2 results.