A059585 Number of labeled 3-node T_0-hypergraphs with n hyperedges (empty hyperedges and multiple hyperedges included).
0, 0, 12, 68, 235, 636, 1478, 3088, 5958, 10800, 18612, 30756, 49049, 75868, 114270, 168128, 242284, 342720, 476748, 653220, 882759, 1178012, 1553926, 2028048, 2620850, 3356080, 4261140, 5367492, 6711093, 8332860, 10279166, 12602368
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Magma
[n*(n-1)*(n+1)*(n^4+28*n^3+323*n^2+1988*n+ 4572)/5040: n in [0..35]]; // Vincenzo Librandi, Oct 07 2017
-
Maple
for n from 0 to 100 do printf(`%d,`,n*(n - 1)*(n + 1)*(n^4 + 28*n^3 + 323*n^2 + 1988*n + 4572)/5040) od:
-
Mathematica
CoefficientList[Series[x^2*(2 - x)^2*(3 - 4*x + 2*x^2)/(1 - x)^8, {x, 0, 50}], x] (* G. C. Greubel, Oct 06 2017 *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 12, 68, 235, 636, 1478, 3088}, 33] (* Vincenzo Librandi, Oct 07 2017 *)
-
PARI
x='x+O('x^50); concat([0,0],Vec(x^2*(2-x)^2*(3-4*x+2*x^2)/(1-x)^8)) \\ G. C. Greubel, Oct 06 2017
Formula
a(n) = binomial(n + 7, n) - 3*binomial(n + 3, n) + 2*binomial(n + 1, n) = n*(n - 1)*(n + 1)*(n^4 + 28*n^3 + 323*n^2 + 1988*n + 4572)/5040.
G.f.: x^2*(2-x)^2*(3-4*x+2*x^2)/(1-x)^8. - Colin Barker, Jun 25 2012
Extensions
More terms from James Sellers, Jan 24 2001
Comments