cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A034187 Not necessarily symmetric n X 4 crossword puzzle grids.

Original entry on oeis.org

1, 39, 649, 7943, 86995, 910667, 9339937, 94844591, 958363411, 9659847433, 97245624749, 978360244839, 9839915415611, 98949930968385, 994959069405031, 10004090931544495, 100586881489055547, 1011348141567934109
Offset: 1

Views

Author

Keywords

Crossrefs

Row 4 of A292357.
Column sums of A059680.

Formula

Empirical: a(n) = 24*a(n-1) - 218*a(n-2) + 1009*a(n-3) - 2623*a(n-4) + 3513*a(n-5) - 142*a(n-6) - 7707*a(n-7) + 11632*a(n-8) - 4443*a(n-9) - 6736*a(n-10) + 9655*a(n-11) - 3714*a(n-12) - 1529*a(n-13) + 1550*a(n-14) - 597*a(n-15) + 1041*a(n-16) + 195*a(n-17) - 150*a(n-18) + 8*a(n-19) + a(n-20) for n > 20. - Andrew Howroyd, Oct 02 2017
Empirical: x *(-1 -15*x +69*x^2 +140*x^3 -1117*x^4 +1696*x^5 +186*x^6 -1351*x^7 -1715*x^8 +3376*x^9 -52*x^10 -1829*x^11 +905*x^12 -1748*x^13 +446*x^14 -241*x^15 -72*x^16 +35*x^17 +7*x^18 +x^19) / ( (x^2+2*x-1) *(x^6 -7*x^5 +x^4 +6*x^3 -11*x^2 +7*x -1) *(x^12 +13*x^11 -71*x^10 +7*x^9 -113*x^8 +22*x^7 +222*x^6 -210*x^5 -19*x^4 +97*x^3 -59*x^2 +15*x -1) ). - R. J. Mathar, Jun 07 2020

A059678 Triangle T(n,k) giving number of fixed 2 X k polyominoes with n cells (n >= 2, 1<=k<=n-1).

Original entry on oeis.org

1, 0, 4, 0, 1, 8, 0, 0, 6, 12, 0, 0, 1, 18, 16, 0, 0, 0, 8, 38, 20, 0, 0, 0, 1, 32, 66, 24, 0, 0, 0, 0, 10, 88, 102, 28, 0, 0, 0, 0, 1, 50, 192, 146, 32, 0, 0, 0, 0, 0, 12, 170, 360, 198, 36, 0, 0, 0, 0, 0, 1, 72, 450, 608, 258, 40, 0, 0, 0, 0, 0, 0, 14, 292, 1002, 952, 326, 44, 0, 0, 0
Offset: 2

Views

Author

N. J. A. Sloane, Feb 05 2001

Keywords

Examples

			Triangle begins:
1;
0, 4;
0, 1, 8;
0, 0, 6, 12;
0, 0, 1, 18, 16;
0, 0, 0,  8, 38, 20;
0, 0, 0,  1, 32, 66, 24;
...
		

Crossrefs

Column sums are A034182.

Programs

  • Maple
    with(combinat): for n from 2 to 30 do for k from 1 to n-1 do printf(`%d,`,sum(binomial(n-k+1, 2*k-n-v)*binomial(n-k+v, n-k), v=0..k) ) od:od:
  • Mathematica
    t[n_, k_] := Sum[Binomial[n-k+1, 2*k-n-v]*Binomial[n-k+v, n-k], {v, 0, k}]; Table[t[n, k], {n, 2, 15}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Dec 20 2013 *)

Formula

T(n, k) = Sum_v C(n-k+1, 2*k-n-v)*C(n-k+v, n-k).
G.f. (1+x*y)^2/(1-x*y)*1/((1-x*y)-(1+x*y)*x^2*y). - Christopher Hanusa (chanusa(AT)math.washington.edu), Sep 22 2004
T(n,k) = 0 for n > 2*k. - Andrew Howroyd, Oct 02 2017

Extensions

More terms from James Sellers, Feb 06 2001

A059679 Triangle T(n,k) giving number of fixed 3 X k polyominoes with n cells (n >= 3, 1<=k<=n-2).

Original entry on oeis.org

1, 0, 8, 0, 6, 25, 0, 1, 44, 50, 0, 0, 32, 154, 83, 0, 0, 9, 212, 376, 124, 0, 0, 1, 158, 784, 750, 173, 0, 0, 0, 62, 987, 2133, 1316, 230, 0, 0, 0, 12, 778, 3802, 4803, 2114, 295, 0, 0, 0, 1, 370, 4622, 11127, 9490, 3184, 368
Offset: 3

Views

Author

N. J. A. Sloane, Feb 05 2001

Keywords

Examples

			Triangle starts:
1;
0, 8;
0, 6, 25;
0, 1, 44,  50;
0, 0, 32, 154,  83;
0, 0,  9, 212, 376,  124;
0, 0,  1, 158, 784,  750,  173;
0, 0,  0,  62, 987, 2133, 1316, 230;
...
		

Crossrefs

Column sums are A034184.

Formula

T(n,k) = 0 for n > 3*k. - Andrew Howroyd, Oct 02 2017

Extensions

a(8) corrected and terms a(39) and beyond from Andrew Howroyd, Oct 02 2017

A059681 Triangle T(n,k) giving number of fixed 5 X k polyominoes with n cells (n >= 5, 1<=k<=n-4).

Original entry on oeis.org

1, 0, 16, 0, 38, 83, 0, 32, 376, 230, 0, 10, 784, 1526, 497, 0, 1, 987, 5154, 4180, 932, 0, 0, 778, 11328, 18944, 9458, 1591, 0, 0, 370, 17598, 58665, 52488, 18936, 2538, 0, 0, 101, 19912, 135325, 204466, 123652, 34726, 3845, 0, 0, 15, 16440, 241550, 611859
Offset: 5

Views

Author

N. J. A. Sloane, Feb 05 2001

Keywords

Examples

			Triangle starts:
1;
0, 16;
0, 38,  83;
0, 32, 376,   230;
0, 10, 784,  1526,   497;
0,  1, 987,  5154,  4180,  932;
0,  0, 778, 11328, 18944, 9458, 1591;
...
		

Crossrefs

Column sums are row 5 of A292357.

Formula

T(n,k) = 0 for n > 5*k. - Andrew Howroyd, Oct 02 2017

Extensions

a(24) corrected and terms a(26) and beyond from Andrew Howroyd, Oct 02 2017

A059684 Triangle T(n,k) giving number of 4 X k polyominoes with n cells (n >= 4, 1<=k<=n-3).

Original entry on oeis.org

1, 0, 3, 0, 6, 15, 0, 2, 39, 30, 0, 1, 59, 148, 61, 0, 0, 42, 349, 383, 97, 0, 0, 21, 519, 1304, 822, 155, 0, 0, 4, 488, 2847, 3548, 1551, 220, 0, 0, 1, 321, 4441, 10323, 8239, 2680, 313, 0, 0, 0, 122, 5008, 21995, 29442, 16821, 4327, 415, 0, 0, 0, 35, 4168, 36035, 79155, 71742, 31576
Offset: 4

Views

Author

N. J. A. Sloane, Feb 05 2001

Keywords

Comments

Note that for k=4 (polyominoes with square bounding rectangle) these are not the free polyominoes, because Read does not apply the full symmetry group of order 8 to reduce the fixed polyominoes for d_q(n), but only the symmetry group of order 4 (excluding the 90 deg rotations). The free polyominoes with square bounding rectangles are his z_4(n) instead. - R. J. Mathar, May 12 2019

Examples

			Triangle starts:
1;
0,3;
0,6,15;
0,2,39, 30;
0,1,59,148,  61;
0,0,42,349, 383,   97;
0,0,21,519,1304,  822,  155;
0,0, 4,488,2847, 3548, 1551,  220;
0,0, 1,321,4441,10323, 8239, 2680,  313;
0,0, 0,122,5008,21995,29442,16821, 4327,415;
0,0, 0, 35,4168,36035,79155,71742,31576,...
There are T(5,2)=3 out of 12 pentominoes that fill the 4X2 shape: the L, N and Y. The F, T, V, W, X, and Z require both dimensions >= 3; the P and U would fit but not touch all sides; the I requires one dimension of 5. - _R. J. Mathar_, May 08 2019
		

Crossrefs

Cf. A059680 (flipped or rotated considered distinct).

Extensions

Changed 518 to 519 (correcting Read...) and added values for n>=11 cells. R. J. Mathar, May 12 2019
Showing 1-5 of 5 results.