cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A034182 Number of not-necessarily-symmetric n X 2 crossword puzzle grids.

Original entry on oeis.org

1, 5, 15, 39, 97, 237, 575, 1391, 3361, 8117, 19599, 47319, 114241, 275805, 665855, 1607519, 3880897, 9369317, 22619535, 54608391, 131836321, 318281037, 768398399, 1855077839, 4478554081, 10812186005, 26102926095, 63018038199, 152139002497, 367296043197
Offset: 1

Views

Author

Keywords

Comments

n X 2 binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row. - R. H. Hardin, Mar 21 2002
Define a triangle with T(n,1) = T(n,n) = n*(n-1) + 1, n>=1, and its interior terms via T(r,c) = T(r-1,c) + T(r-1,c-1)+ T(r-2,c-1), 2<=cJ. M. Bergot, Mar 16 2013

Crossrefs

Row 2 of A292357.
Column sums of A059678.
Cf. A001333, A034184, A034187, A052542 (first differences).

Programs

  • Haskell
    a034182 n = a034182_list !! (n-1)
    a034182_list = 1 : 5 : (map (+ 4) $
       zipWith (+) a034182_list (map (* 2) $ tail a034182_list))
    -- Reinhard Zumkeller, May 23 2013
  • Mathematica
    {1}~Join~NestList[{#2, 2 #2 + #1 + 4} & @@ # &, {1, 5}, 28][[All, -1]] (* Michael De Vlieger, Oct 02 2017 *)

Formula

a(n) = 2a(n-1) + a(n-2) + 4.
(1 + 5x + 15x^2 + ...) = (1 + 2x + 2x^2 + ...) * (1 + 3x + 7x^2 + ...), convolution of A040000 and left-shifted A001333.
a(n) = (-4 + (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n))/2. G.f.: x*(1+x)^2/((1-x)*(1 - 2*x - x^2)). - Colin Barker, May 22 2012
a(n) = A001333(n+1)-2. - R. J. Mathar, Mar 28 2013
a(n) = A048739(n-3) +2*A048739(n-2) +A048739(n-1). - R. J. Mathar, Jun 15 2020

A292357 Array read by antidiagonals: T(m,n) is the number of fixed polyominoes that have a width of m and height of n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 39, 111, 39, 1, 1, 97, 649, 649, 97, 1, 1, 237, 3495, 7943, 3495, 237, 1, 1, 575, 18189, 86995, 86995, 18189, 575, 1, 1, 1391, 93231, 910667, 1890403, 910667, 93231, 1391, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 02 2017

Keywords

Comments

Equivalently, the number of m X n binary arrays with all 1's connected and at least one 1 on each edge.

Examples

			Array begins:
===============================================================
m\n| 1   2     3       4         5           6             7
---|-----------------------------------------------------------
1  | 1   1     1       1         1           1             1...
2  | 1   5    15      39        97         237           575...
3  | 1  15   111     649      3495       18189         93231...
4  | 1  39   649    7943     86995      910667       9339937...
5  | 1  97  3495   86995   1890403    38916067     782256643...
6  | 1 237 18189  910667  38916067  1562052227   61025668579...
7  | 1 575 93231 9339937 782256643 61025668579 4617328590967...
...
T(2,2) = 5 counts 4 3-ominoes of shape 2x2 and 1 4-omino of shape 2x2.
T(3,2) = 15 counts 8 4-ominoes of shape 3x2, 6 5-ominoes of shape 3x2, and 1 6-omino of shape 3x2.
T(4,2) = 39 counts 12 5-ominoes of shape 4x2, 18 6-ominoes of shape 4x2, 8 7-ominoes of shape 4x2, and 1 8-omino of shape 4x2.
		

Crossrefs

Rows 2..4 are A034182, A034184, A034187.
Main diagonal is A268404.
Cf. A268371 (nonequivalent), A287151, A308359.

Programs

  • Mathematica
    A287151 = Import["https://oeis.org/A287151/b287151.txt", "Table"][[All, 2]];
    imax = Length[A287151];
    mmax = Sqrt[2 imax] // Ceiling;
    Clear[V]; VV = Table[V[m-n+1, n], {m, 1, mmax}, {n, 1, m}] // Flatten;
    Do[Evaluate[VV[[i]]] = A287151[[i]], {i, 1, imax}];
    V[0, ] = V[, 0] = 0;
    T[m_, n_] := If[m == 1 || n == 1, 1, U[m, n] - 2 U[m, n-1] + U[m, n-2]];
    U[m_, n_] := V[m, n] - 2 V[m-1, n] + V[m-2, n];
    Table[T[m-n+1, n], {m, 1, mmax}, {n, 1, m}] // Flatten // Take[#, imax]& (* Jean-François Alcover, Sep 22 2019 *)

Formula

T(m, n) = U(m, n) - 2*U(m, n-1) + U(m, n-2) where U(m, n) = V(m, n) - 2*V(m-1, n) + V(m-2, n) and V(m, n) = A287151(m, n).

A034184 Not necessarily symmetric n X 3 crossword puzzle grids.

Original entry on oeis.org

1, 15, 111, 649, 3495, 18189, 93231, 474479, 2406621, 12187137, 61668609, 311938233, 1577602849, 7977940187, 40342860995, 204001993697, 1031568839407, 5216271035257, 26376744398811, 133377264694375
Offset: 1

Views

Author

Keywords

Crossrefs

Row 3 of A292357.
Column sums of A059679.

Formula

Appears to obey a 9-term linear recurrence. - Ralf Stephan, May 05 2004
Empirical g.f.: -x*(x^8-x^7-2*x^6-9*x^5+14*x^4-11*x^3-6*x^2+5*x+1) / ((x-1)*(x^2+2*x-1)*(x^6-7*x^5+x^4+6*x^3-11*x^2+7*x-1)). - Colin Barker, Jun 09 2013

A059680 Triangle T(n,k) read by rows giving number of fixed 4 X k polyominoes with n cells (n >= 4, 1<=k<=n-3).

Original entry on oeis.org

1, 0, 12, 0, 18, 50, 0, 8, 154, 120, 0, 1, 212, 584, 230, 0, 0, 158, 1396, 1526, 388, 0, 0, 62, 2038, 5154, 3276, 602, 0, 0, 12, 1952, 11328, 14192, 6194, 880, 0, 0, 1, 1232, 17598, 41196, 32824, 10704, 1230, 0, 0, 0, 488, 19912, 87980, 117616, 67284, 17294, 1660
Offset: 4

Views

Author

N. J. A. Sloane, Feb 05 2001

Keywords

Examples

			Triangle starts:
1;
0, 12;
0, 18,  50;
0,  8, 154,  120;
0,  1, 212,  584,   230;
0,  0, 158, 1396,  1526,   388;
0,  0,  62, 2038,  5154,  3276,  602;
0,  0,  12, 1952, 11328, 14192, 6194, 880;
...
		

Crossrefs

Column sums are A034187.

Formula

T(n,k) = 0 for n > 4*k. - Andrew Howroyd, Oct 02 2017

Extensions

Terms a(32) and beyond from Andrew Howroyd, Oct 02 2017

A034185 Number of symmetric n X 3 crossword puzzle grids.

Original entry on oeis.org

1, 3, 11, 21, 61, 111, 309, 565, 1563, 2859, 7907, 14459, 39991, 73117, 202227, 369729, 1022587, 1869581, 5170829, 9453757, 26146909, 47804041, 132214959, 241726811, 668560673, 1222320359, 3380656559, 6180808253, 17094691953, 31253992007, 86441342981
Offset: 1

Views

Author

Keywords

Comments

Rules: all white squares are edge connected; at least 1 white square on every edge of grid; symmetric ones have 180-degree rotational symmetry.

Crossrefs

Extensions

a(23)-a(31) from Sean A. Irvine, Aug 07 2020

A034186 Number of symmetric n X 4 crossword puzzle grids.

Original entry on oeis.org

1, 3, 21, 47, 227, 499, 2321, 5087, 23429, 51263, 235881, 515691, 2372511, 5185609, 23856215, 52139887, 239863701, 524238555, 2411688233, 5270900439, 24248031407, 52995614649
Offset: 1

Views

Author

Keywords

Crossrefs

Showing 1-6 of 6 results.