cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059727 a(n) = Fibonacci(n)*(Fibonacci(n) + 1).

Original entry on oeis.org

0, 2, 2, 6, 12, 30, 72, 182, 462, 1190, 3080, 8010, 20880, 54522, 142506, 372710, 975156, 2552006, 6679640, 17484942, 45771990, 119825862, 313697232, 821252306, 2150037792, 5628825650, 14736381842, 38580227142, 101004149532, 264431978670, 692291393640, 1812441566630
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2001

Keywords

References

  • L. Euler, Observationes analyticae, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 54.

Programs

  • Haskell
    a059727 n = a059727_list !! n
    a059727_list = zipWith (*) a000045_list $ map (+ 1) a000045_list
    -- Reinhard Zumkeller, Dec 17 2011
  • Magma
    [ Fibonacci(n)*(Fibonacci(n)+1): n in [0..100]]; // Vincenzo Librandi, Apr 15 2011
    
  • Mathematica
    #(#+1)&/@Fibonacci[Range[0,40]] (* or *) LinearRecurrence[{3,1,-5,-1,1},{0,2,2,6,12},40] (* Harvey P. Dale, May 29 2025 *)
  • PARI
    a(n)=2*binomial(fibonacci(n)+1,2)
    
  • PARI
    a(n) = { my(f=fibonacci(n)); f*(f + 1) } \\ Harry J. Smith, Jun 29 2009
    

Formula

G.f.: 2*x*(1 - 2*x - x^2 + x^3)/((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = Fibonacci(n) + (1/5)*(Lucas(2*n) - 2*(-1)^n).