cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366397 Decimal expansion of the number whose continued fraction terms are one larger than those of Pi.

Original entry on oeis.org

4, 1, 2, 4, 0, 6, 0, 1, 0, 2, 2, 8, 7, 8, 6, 5, 3, 9, 1, 6, 7, 5, 8, 5, 0, 8, 3, 2, 2, 5, 6, 8, 1, 7, 4, 9, 7, 8, 4, 2, 0, 1, 8, 3, 7, 2, 9, 7, 3, 9, 1, 3, 5, 6, 7, 7, 0, 7, 3, 4, 3, 4, 3, 5, 6, 2, 3, 1, 8, 9, 4, 5, 4, 1, 5, 8, 9, 1, 8, 0, 1, 6, 8, 3, 3, 3, 3, 1, 5, 4, 4, 2, 9, 7, 0, 6, 8, 1, 0, 3, 0, 3, 6, 0
Offset: 1

Views

Author

Rok Cestnik, Oct 08 2023

Keywords

Examples

			4.12406010228786539167585... = 4 + 1/(8 + 1/(16 + 1/(2 + 1/(293 + ...)))).
Pi = 3.141592653589793238... = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...)))).
		

Crossrefs

Programs

  • PARI
    N = 25;
    cf(v) = my(m=contfracpnqn(v)); m[1, 1]/m[2, 1];
    summand(k) = (-1)^k/2^(10*k)*(-2^5/(4*k+1)-1/(4*k+3)+2^8/(10*k+1)-2^6/(10*k+3)-2^2/(10*k+5)-2^2/(10*k+7)+1/(10*k+9));
    pi1 = contfrac(1/2^6*sum(k=0,N,summand(k)));
    pi2 = contfrac(1/2^6*sum(k=0,N+1,summand(k)));
    n = 0; while(pi1[1..n+1] == pi2[1..n+1], n++);
    ap1 = cf(apply(x->x+1, pi1[1..n-1]));
    ap2 = cf(apply(x->x+1, pi1[1..n]));
    n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);
    A366397 = digits(floor(10^n*ap1));

A089250 Add 2 (mod 10) to each decimal digit of Pi.

Original entry on oeis.org

5, 3, 6, 3, 7, 1, 4, 8, 7, 5, 7, 0, 1, 9, 1, 5, 4, 5, 0, 6, 8, 4, 8, 6, 5, 5, 0, 5, 4, 9, 1, 7, 2, 4, 0, 0, 6, 3, 1, 9, 3, 8, 1, 5, 1, 1, 5, 9, 7, 3, 2, 7, 0, 4, 2, 1, 9, 6, 1, 6, 6, 7, 1, 4, 5, 2, 9, 0, 3, 8, 6, 2, 8, 4, 0, 8, 4, 2, 0, 1, 1, 0, 8, 4, 0, 2, 5, 6, 0, 4, 7, 5, 6, 4, 3, 3, 9, 2, 8, 9, 1, 0, 4, 3, 6
Offset: 1

Views

Author

Mike Hoolehan (mike(AT)sycamore.us), Dec 12 2003

Keywords

Crossrefs

Cf. A059833.

Programs

  • Mathematica
    Mod[2+#,10]&/@RealDigits[Pi,10,150][[1]] (* Harvey P. Dale, Apr 30 2020 *)

A138714 Add 1, modulo 10, to the decimal expansion of e, A001113.

Original entry on oeis.org

3, 8, 2, 9, 3, 9, 2, 9, 3, 9, 5, 6, 0, 1, 5, 6, 3, 4, 6, 4, 7, 1, 3, 9, 8, 5, 8, 2, 4, 6, 3, 7, 7, 3, 5, 0, 8, 8, 6, 8, 3, 5, 8, 1, 0, 4, 7, 0, 0, 0, 6, 0, 6, 8, 5, 0, 7, 7, 0, 7, 8, 7, 3, 8, 8, 3, 5, 1, 8, 7, 7, 4, 1, 4, 6, 4, 6, 5, 8, 6, 0, 5, 6, 8, 2, 4, 9, 3, 2, 8, 9, 6, 3, 6, 2, 7, 7, 5, 3, 8, 5, 3, 8, 5, 7
Offset: 1

Views

Author

Felix Tubiana, May 15 2008

Keywords

Examples

			3.82939293956015634647139858...
		

Crossrefs

Programs

  • Mathematica
    Mod[# + 1, 10] & /@ First@ RealDigits@ N[E, 105] (* Michael De Vlieger, Apr 01 2015 *)
  • Sage
    [(floor((1+e*10^n))%10) for n in range(105)] # Danny Rorabaugh, Apr 01 2015

Extensions

Offset set to 1 by Alois P. Heinz, Jul 05 2022
Showing 1-3 of 3 results.