A059835 Form triangle as follows: start with three single digits: 0, 1, 2. Each succeeding row is a concatenation of the previous three rows.
0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 2
Offset: 0
Examples
Triangle begins: 0 1 2 0 1 2 1 2 0 1 2 2 0 1 2 1 2 0 1 2 ...
References
- C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 273.
Links
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
- Index entries for sequences that are fixed points of mappings
Crossrefs
Cf. A059832.
Programs
-
Maple
T:= proc(n) option remember; `if`(n<3, n, seq(T(i), i=n-3..n-1)) end: seq(T(n), n=0..10); # Alois P. Heinz, May 22 2014
-
Mathematica
NestList[ Flatten[# /. {0 -> {1}, 1 -> {2}, 2 -> {0, 1, 2}}] &, {0}, 8] // Flatten (* Robert G. Wilson v, May 20 2014 *)
Formula
a(n) = A059832(n) - 1. - Sean A. Irvine, Oct 11 2022
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Feb 26 2001
Comments