cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059860 a(n) = binomial(n+1, 2)^5.

Original entry on oeis.org

1, 243, 7776, 100000, 759375, 4084101, 17210368, 60466176, 184528125, 503284375, 1252332576, 2887174368, 6240321451, 12762815625, 24883200000, 46525874176, 83841135993, 146211169851, 247609900000, 408410100000, 657748550151, 1036579476493, 1601568101376
Offset: 1

Views

Author

Jason Earls, Feb 28 2001

Keywords

Comments

Number of 5-dimensional cage assemblies.
See Chap. 61, "Hyperspace Prisons", of C. Pickover's book "Wonders of Numbers" for full explanation of "cage numbers."

References

  • Clifford A. Pickover, Wonders of Numbers, Oxford University Press, 2001, p. 325.

Crossrefs

Cf. A059827.

Programs

  • Maple
    for n from 1 to 100 do printf(`%d,`,((n^5)*(n + 1)^5)/(2^5) ) od:
    with (combinat):seq(mul(stirling2(n+1,n),k=1..5),n=1..21); # Zerinvary Lajos, Dec 14 2007
  • Mathematica
    m = 5; Table[ ( (n^m)(n + 1)^m )/(2^m), {n, 1, 26} ]
    Table[Binomial[n+1,2]^5,{n,20}] (* Harvey P. Dale, May 04 2018 *)
  • PARI
    a(n) = { (n*(n + 1)/2)^5 } \\ Harry J. Smith, Jun 29 2009

Formula

L(n) = ((n^m)(n + 1)^m)/(2^m) where m is the dimension.
G.f.: x * (x^8 +232*x^7 +5158*x^6+ 27664*x^5 +47290*x^4 +27664*x^3 +5158*x^2 +232*x +1) / (1-x)^11. - Colin Barker, Jun 28 2012
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 4032 - 1120*Pi^2/3 - 32*Pi^4/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4480*log(2) + 720*zeta(3) + 60*zeta(5) - 4032. (End)

Extensions

More terms from James Sellers, Feb 28 2001
Better definition from Zerinvary Lajos, May 23 2006
Corrected the definition from binomial(n+2,2)^5 to binomial(n+1,2)^5. - Harry J. Smith, Jun 29 2009