cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A059869 Numbers k such that there exist no palindromic heptagonals of length k.

Original entry on oeis.org

8, 9, 14, 16, 32
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2000

Keywords

Crossrefs

Programs

  • Mathematica
    A054910 = {0, 1, 7, 55, 616, 3553, 4774, 60606, 848848, 4615164, 5400045, 6050506, 7165445617, 62786368726, 65331413356, 73665056637, 91120102119, 345546645543, 365139931563, 947927729749, 3646334336463, 7111015101117, 717685292586717, 19480809790808491, 615857222222758516, 1465393008003935641, 8282802468642082828, 15599378333387399551, 20316023422432061302};
    A059869[n_] := Length[Select[A054910, IntegerLength[#] == n || (n == 1 && # == 0) &]];
    Select[Range[19], A059869[#] == 0 &] (* Robert Price, Apr 28 2019 *)

A059870 Numbers n such that there exist no palindromic octagonal numbers of length n.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 15, 17, 18, 20, 22, 23, 26, 31, 34
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2000

Keywords

Crossrefs

Extensions

a(13)-a(17) from World!Of Numbers link entered by Michel Marcus, Mar 04 2014

A082721 There exist no palindromic hexagonals of length n.

Original entry on oeis.org

3, 8, 9, 12, 22, 24, 27, 30, 36, 38, 40
Offset: 1

Views

Author

Patrick De Geest, Apr 13 2003

Keywords

Crossrefs

Programs

  • Mathematica
    A054969 = {0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521, 16588189498188561, 58183932923938185, 66056806460865066, 67898244444289876, 514816979979618415, 3075488771778845703, 6364000440440004636, 15199896744769899151};
    A082721[n_] := Length[Select[A054969, IntegerLength[#] == n || (n == 1 && # == 0) &]];
    Select[Range[19], A082721[#] == 0 &] (* Robert Price, Apr 27 2019 *)
  • Python
    def ispal(n): s = str(n); return s == s[::-1]
    def hexpals(limit):
      yield from (k*(2*k-1) for k in range(limit+1) if ispal(k*(2*k-1)))
    def aupto(limit):
      lengths = set(range(1, limit+1))
      for h in hexpals(10**limit):
        if len(lengths) == 0: return
        lh, minlen = len(str(h)), min(lengths)
        if lh > minlen: print(minlen, "in A082721"); lengths.discard(minlen)
        if lh in lengths: lengths.discard(lh); print("... discarding", lh)
    aupto(14) # Michael S. Branicky, Mar 08 2021

A082722 Numbers k for which there exist no palindromic 9-gonals (also known as nonagonals or enneagonals) of length k.

Original entry on oeis.org

2, 6, 13, 14, 15, 16, 20, 25, 27, 28, 29, 30, 31, 32
Offset: 1

Views

Author

Patrick De Geest, Apr 13 2003

Keywords

Comments

Previous name was: There exist no palindromic nonagonals (enneagonals) of length n.

Crossrefs

Programs

  • Mathematica
    A082723 = {0, 1, 9, 111, 474, 969, 6666, 18981, 67276, 4411144, 6964696, 15444451, 57966975, 448707844, 460595064, 579696975, 931929139, 994040499, 1227667221, 9698998969, 61556965516, 664248842466, 699030030996, 99451743334715499, 428987160061789824, 950178723327871059, 1757445628265447571, 4404972454542794044, 9433971680861793349, 499583536595635385994, 1637992008558002997361, 19874891310701319847891};
    A082722[n_] := Length[Select[A082723, IntegerLength[#] == n || (n == 1 && # == 0) &]];
    Select[Range[22], A082722[#] == 0 &] (* Robert Price, Apr 29 2019 *)

Extensions

Definition edited by Jon E. Schoenfield, Sep 15 2013

A307752 Number of n-digit palindromic pentagonal numbers.

Original entry on oeis.org

3, 1, 0, 2, 1, 1, 2, 2, 0, 4, 0, 0, 3, 1, 1, 1, 3, 2, 4, 1, 3, 1, 1, 0, 3, 3, 2, 2, 2, 0, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Robert Price, Apr 26 2019

Keywords

Comments

Number of n-digit terms in A002069.

Examples

			There are only two 4-digit pentagonal number that are palindromic, 1001 and 2882. Thus, a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    A002069 = {0, 1, 5, 22, 1001, 2882, 15251, 720027, 7081807, 7451547, 26811862, 54177145, 1050660501, 1085885801, 1528888251, 2911771192, 2376574756732, 5792526252975, 5875432345785, 10810300301801, 264571020175462, 5292834004382925, 10808388588380801, 15017579397571051, 76318361016381367, 150621384483126051, 735960334433069537, 1003806742476083001, 1087959810189597801, 2716280733370826172};
    Table[Length[Select[A002069, IntegerLength[#] == n  || (n == 1 && # == 0) &]], {n, 18}] (* Robert Price, Apr 26 2019 *)
  • Python
    def afind(terms):
      m, n, c = 0, 1, 0
      while n <= terms:
        p = m*(3*m-1)//2
        s = str(p)
        if len(s) == n:
           if s == s[::-1]: c += 1
        else:
          print(c, end=", ")
          n, c = n+1, int(s == s[::-1])
        m += 1
    afind(14) # Michael S. Branicky, Mar 01 2021

Extensions

a(19)-a(22) from Michael S. Branicky, Mar 01 2021
a(23)-a(40) from Bert Dobbelaere, Apr 15 2025

A307753 Number of palindromic pentagonal numbers of length n whose index is also palindromic.

Original entry on oeis.org

3, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Robert Price, Apr 26 2019

Keywords

Comments

Is there a nonzero term beyond a(5)?

Examples

			There is only one palindromic pentagonal number of length 4 whose index is also palindromic, 44->2882. Thus, a(4)=1.
		

Crossrefs

Programs

  • Mathematica
    A002069 = {0, 1, 5, 22, 1001, 2882, 15251, 720027, 7081807, 7451547, 26811862, 54177145, 1050660501, 1085885801, 1528888251, 2911771192, 2376574756732, 5792526252975, 5875432345785, 10810300301801, 264571020175462, 5292834004382925, 10808388588380801, 15017579397571051, 76318361016381367, 150621384483126051, 735960334433069537, 1003806742476083001, 1087959810189597801, 2716280733370826172};
    A028386 = {0, 1, 2, 4, 26, 44, 101, 693, 2173, 2229, 4228, 6010, 26466, 26906, 31926, 44059, 1258723, 1965117, 1979130, 2684561, 13280839, 59401650, 84885761, 100058581, 225563533, 316882086, 700457153, 818049201, 851649306, 1345679688};
    Table[Length[Select[A028386[[Table[Select[Range[18], IntegerLength[A002069[[#]]] == n  || (n == 1 && A002069[[#]] == 0) &], {n, 18}][[n]]]], PalindromeQ[#] &]], {n, 18}]

Extensions

a(19)-a(35) from Chai Wah Wu, Sep 07 2019
Showing 1-6 of 6 results.