cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A054969 Palindromic hexagonal numbers.

Original entry on oeis.org

0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521
Offset: 1

Views

Author

Jeff Heleen, May 26 2000

Keywords

Crossrefs

Intersection of A000384 and A002113.

Programs

  • Mathematica
    Select[PolygonalNumber[6, Range[0, 10^6]], PalindromeQ] (* Robert Price, Apr 27 2019 *)

Extensions

Added a(1)=0 by Robert Price, Apr 27 2019

A082722 Numbers k for which there exist no palindromic 9-gonals (also known as nonagonals or enneagonals) of length k.

Original entry on oeis.org

2, 6, 13, 14, 15, 16, 20, 25, 27, 28, 29, 30, 31, 32
Offset: 1

Views

Author

Patrick De Geest, Apr 13 2003

Keywords

Comments

Previous name was: There exist no palindromic nonagonals (enneagonals) of length n.

Crossrefs

Programs

  • Mathematica
    A082723 = {0, 1, 9, 111, 474, 969, 6666, 18981, 67276, 4411144, 6964696, 15444451, 57966975, 448707844, 460595064, 579696975, 931929139, 994040499, 1227667221, 9698998969, 61556965516, 664248842466, 699030030996, 99451743334715499, 428987160061789824, 950178723327871059, 1757445628265447571, 4404972454542794044, 9433971680861793349, 499583536595635385994, 1637992008558002997361, 19874891310701319847891};
    A082722[n_] := Length[Select[A082723, IntegerLength[#] == n || (n == 1 && # == 0) &]];
    Select[Range[22], A082722[#] == 0 &] (* Robert Price, Apr 29 2019 *)

Extensions

Definition edited by Jon E. Schoenfield, Sep 15 2013

A054970 Index numbers for palindromic hexagonal numbers.

Original entry on oeis.org

0, 1, 2, 6, 39, 55, 87, 182, 556, 644, 797, 917, 1593, 1685, 25141, 51425, 55556, 83527, 810311, 1620213, 1853942, 5555556, 17352586, 17835196, 25004441, 91071921, 170563673, 181737182, 184252876, 507354403, 1240058219, 1783816196, 2756800387
Offset: 1

Views

Author

Jeff Heleen, May 26 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 10^6], PalindromeQ[PolygonalNumber[6, #]] &] (* Robert Price, Apr 27 2019 *)

Extensions

Added a(1)=0 by Robert Price, Apr 27 2019

A307765 Number of palindromic hexagonal numbers with exactly n digits.

Original entry on oeis.org

3, 1, 0, 2, 2, 2, 4, 0, 0, 3, 1, 0, 3, 1, 2, 1, 4, 1, 2, 1, 2, 0
Offset: 1

Views

Author

Robert Price, Apr 27 2019

Keywords

Comments

Number of terms in A054969 with exactly n digits.

Examples

			There are only two 4-digit hexagonal numbers that are palindromic, 3003 and 5995. Thus, a(4)=2.
		

Crossrefs

Programs

  • Mathematica
    A054969 = {0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521, 16588189498188561, 58183932923938185, 66056806460865066, 67898244444289876, 514816979979618415, 3075488771778845703, 6364000440440004636, 15199896744769899151}; Table[Length[ Select[A054969, IntegerLength[#] == n || (n == 1 && # == 0) &]], {n, 19}]
  • Python
    def afind(terms):
      m, n, c = 0, 1, 0
      while n <= terms:
        p = m*(2*m-1)
        s = str(p)
        if len(s) == n:
           if s == s[::-1]: c += 1
        else:
          print(c, end=", ")
          n, c = n+1, int(s == s[::-1])
        m += 1
    afind(14) # Michael S. Branicky, Mar 01 2021

Extensions

a(20)-a(22) from Michael S. Branicky, Mar 01 2021

A307766 Number of palindromic hexagonal numbers of length n whose index is also palindromic.

Original entry on oeis.org

3, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Robert Price, Apr 27 2019

Keywords

Comments

Is there a nonzero term beyond a(7)?

Examples

			There is only one palindromic hexagonal number of length 4 whose index is also palindromic, 55->5995. Thus, a(4)=1.
		

Crossrefs

Programs

  • Mathematica
    A054969 = {0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521, 16588189498188561, 58183932923938185, 66056806460865066, 67898244444289876, 514816979979618415, 3075488771778845703, 6364000440440004636, 15199896744769899151};
    A054970 = {0, 1, 2, 6, 39, 55, 87, 182, 556, 644, 797, 917, 1593, 1685, 25141, 51425, 55556, 83527, 810311, 1620213, 1853942, 5555556, 17352586, 17835196, 25004441, 91071921, 170563673, 181737182, 184252876, 507354403, 1240058219, 1783816196, 2756800387};
    Table[Length[ Select[A054970[[Table[ Select[Range[18], IntegerLength[A054969[[#]]] == n || (n == 1 && A054969[[#]] == 0) &], {n, 19}][[n]]]], PalindromeQ[#] &]], {n, 19}]
Showing 1-5 of 5 results.