A059871 Number of solutions to the equation p_i = (1+mod(i,2))*p_{i-1} +- p_{i-2} +- p_{i-3} +- ... +- 2 +- 1, where p_i is the i-th prime number (where p_1 = 2 and the "zeroth prime" p_0 is defined to be 1).
1, 1, 1, 1, 1, 3, 3, 4, 6, 12, 16, 31, 46, 90, 140, 276, 449, 877, 1443, 2834, 4725, 9395, 16153, 32037, 55872, 110288, 190815, 380488, 672728, 1342395, 2434797, 4808180, 8579625, 17070112, 30858078, 61271317, 110926277, 220979544, 402354848
Offset: 1
Keywords
Examples
For the first five primes we have only one solution for each: 2 = 2*1, 3 = 1*2 + 1*1, 5 = 2*3 - 1*2 + 1*1, 7 = 1*5 + 1*3 - 1*2 + 1*1, 11 = 2*7 - 1*5 + 1*3 - 1*2 + 1*1 and for the next prime 13, we have 3 solutions: 13 = 11-7+5+3+2-1 = 11+7-5-3+2+1 = 11+7-5+3-2-1.
References
- D. M. Burton, Elementary Number Theory.
- S. S. Pillai, "On some empirical theorem of Scherk", J. Indian Math. Soc. 17 (1927-28), pp. 164-171.
- W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964.
Links
- Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..1000 (first 250 terms from Alois P. Heinz)
- J. L. Brown, Proof of Scherk's Conjecture on the Representation of Primes, Amer. Math. Monthly 74 (1967), 31-33.
- William Y. Lee, On the representation of integers, Math. Mag. 47 (1974), 150-152.
- H. F. Scherk, Bemerkungen über die Bildung der Primzahlen aus einander, Journal für die reine und angewandte Mathematik 10 (1883), pp. 201-208.
- H. F. Scherk, Bemerkungen über die Bildung der Primzahlen aus einander, Journal für die reine und angewandte Mathematik 10 (1883), pp. 201-208.
Crossrefs
Programs
-
Maple
map(nops, primesums_primes_mult(16)); primesums_primes_mult := proc(upto_n) local a,b,i,n,p,t; a := []; for n from 1 to upto_n do b := []; p := ithprime(n); for i from (2^(n-1)) to ((2^n)-1) do t := bin_prime_sum(i); if(t = p) then b := [op(b),i]; fi; od; a := [op(a),b]; print(a); od; RETURN(a); end; # second Maple program p:= n-> `if`(n<0, 0, `if`(n=0, 1, ithprime(n))): sp:= proc(n) sp(n):= `if`(n<0, 0, p(n)+sp(n-1)) end: b := proc(n, i) option remember; `if`(n>sp(i), 0, `if`(i<0, 1, b(n+p(i), i-1)+ b(abs(n-p(i)), i-1))) end: a:= n-> b(p(n) -(1+irem(n, 2))*p(n-1), n-2): seq(a(n), n=1..40); # Alois P. Heinz, Aug 05 2012
-
Mathematica
nmax = 40; d = {1}; a1 = {}; pp = 1; Do[ p = Prime[n]; i = Ceiling[Length[d]/2] + Abs[p - (1 + Mod[n, 2])*pp]; AppendTo[a1, If[i > Length[d], 0, d[[i]]]]; d = PadLeft[d, Length[d] + 2 pp] + PadRight[d, Length[d] + 2 pp]; pp = p; , {n, nmax}]; a1 (* Ray Chandler, Mar 11 2014 *)
Extensions
More terms from Naohiro Nomoto, Sep 11 2001
More terms from Larry Reeves (larryr(AT)acm.org), Nov 20 2003
a(33)-a(39) from Donovan Johnson, Oct 01 2010
Comments