cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059942 A059941 translated from binary to decimal.

Original entry on oeis.org

1, 1, 3, 2, 2, 3, 7, 4, 5, 4, 4, 5, 4, 7, 15, 8, 9, 8, 9, 10, 9, 8, 8, 9, 10, 9, 8, 9, 8, 15, 31, 16, 17, 16, 19, 16, 17, 16, 17, 18, 21, 16, 17, 18, 17, 16, 16, 17, 18, 17, 16, 21, 18, 17, 16, 17, 16, 19, 16, 17, 16, 31, 63, 32, 33, 32, 35, 32, 33, 32, 35, 36, 33, 32, 35, 32, 33, 32
Offset: 1

Views

Author

Henry Bottomley, Feb 14 2001

Keywords

Examples

			a(35)=19 since A059941(35)=10011.
		

Programs

  • Haskell
    import Data.List (inits, tails)
    a059942 n = a059942_list !! (n-1)
    a059942_list = map (foldr (\d v -> v * 2 + d) 0) $ f a030341_tabf where
       f (xs:xss)
         | 0 `elem` xs = f xss
         | otherwise = map fromEnum (zipWith (==)
                       (tail $ inits xs) (reverse $ init $ tails xs)) : f xss
    -- Reinhard Zumkeller, Apr 03 2014
  • Mathematica
    a[n_] := (id = Drop[ IntegerDigits[n+1, 2], 1]+1; an = {}; Do[ PrependTo[an, If[Take[id, k] == Take[id, -k], 1, 0]], {k, 1, Length[id]}]; FromDigits[an, 2]); Table[a[n], {n, 1, 78}](* Jean-François Alcover, Nov 21 2011 *)

Formula

a(n) =A059943(n)/2

Extensions

Offset fixed by Reinhard Zumkeller, Apr 03 2014

A007931 Numbers that contain only 1's and 2's. Nonempty binary strings of length n in lexicographic order.

Original entry on oeis.org

1, 2, 11, 12, 21, 22, 111, 112, 121, 122, 211, 212, 221, 222, 1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222, 11111, 11112, 11121, 11122, 11211, 11212, 11221, 11222, 12111, 12112, 12121, 12122
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Numbers written in the dyadic system [Smullyan, Stillwell]. - N. J. A. Sloane, Feb 13 2019
Logic-binary sequence: prefix it by the empty word to have all binary words on the alphabet {1,2}.
The least binary word of length k is a(2^k - 1).
See Mathematica program for logic-binary sequence using (0,1) in place of (1,2); the sequence starts with 0,1,00,01,10. - Clark Kimberling, Feb 09 2012
A007953(a(n)) = A014701(n+1); A007954(a(n)) = A048896(n). - Reinhard Zumkeller, Oct 26 2012
a(n) is n written in base 2 where zeros are not allowed but twos are. The two distinct digits used are 1, 2 instead of 0, 1. To obtain this sequence from the "canonical" base 2 sequence with zeros allowed, just replace any 0 with a 2 and then subtract one from the group of digits situated on the left: (10-->2; 100-->12; 110-->22; 1000-->112; 1010-->122). - Robin Garcia, Jan 31 2014
For numbers made of only two different digits, see also A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340(digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases). Numbers with exactly two distinct (but unspecified) digits in base 10 are listed in A031955, for other bases in A031948-A031954. - M. F. Hasler, Apr 04 2015
The variant with digits {0, 1} instead of {1, 2} is obtained by deleting all initial digits in sequence A007088 (numbers written in base 2). - M. F. Hasler, Nov 03 2020

Examples

			Positive numbers may not start with 0 in the OEIS, otherwise this sequence would have been written as: 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010, 01011, ...
From _Hieronymus Fischer_, Jun 06 2012: (Start)
a(10)   = 122.
a(100)  = 211212.
a(10^3) = 222212112.
a(10^4) = 1122211121112.
a(10^5) = 2111122121211112.
a(10^6) = 2221211112112111112.
a(10^7) = 11221112112122121111112.
a(10^8) = 12222212122221111211111112.
a(10^9) = 22122211221212211212111111112. (End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 2. - From N. J. A. Sloane, Jul 26 2012
  • K. Atanassov, On the 97th, 98th and the 99th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 3, 89-93.
  • R. M. Smullyan, Theory of Formal Systems, Princeton, 1961.
  • John Stillwell, Reverse Mathematics, Princeton, 2018. See p. 90.

Crossrefs

Cf. A007932 (digits 1-3), A059893, A045670, A052382 (digits 1-9), A059939, A059941, A059943, A032924, A084544, A084545, A046034 (prime digits 2,3,5,7), A089581, A084984 (no prime digits); A001742, A001743, A001744: loops; A202267 (digits 0, 1 and primes), A202268 (digits 1,4,6,8,9), A014261 (odd digits), A014263 (even digits).
Cf. A007088 (digits 0 & 1), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9), and A032804-A032816 (in other bases).
Cf. A020450 (primes).

Programs

  • Haskell
    a007931 n = f (n + 1) where
       f x = if x < 2 then 0 else (10 * f x') + m + 1
         where (x', m) = divMod x 2
    -- Reinhard Zumkeller, Oct 26 2012
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {1,2}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    # Maple program to produce the sequence:
    a:= proc(n) local m, r, d; m, r:= n, 0;
          while m>0 do d:= irem(m, 2, 'm');
            if d=0 then d:=2; m:= m-1 fi;
            r:= d, r
          od; parse(cat(r))/10
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 26 2016
    # Maple program to invert this sequence: given a(n), it returns n. - N. J. A. Sloane, Jul 09 2012
    invert7931:=proc(u)
    local t1,t2,i;
    t1:=convert(u,base,10);
    [seq(t1[i]-1,i=1..nops(t1))];
    [op(%),1];
    t2:=convert(%,base,2,10);
    add(t2[i]*10^(i-1),i=1..nops(t2))-1;
    end;
  • Mathematica
    f[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[f, 42] (* Robert G. Wilson v Sep 14 2006 *)
    (* Next, A007931 using (0,1) instead of (1,2) *)
    d[n_] := FromDigits[Rest@IntegerDigits[n + 1, 2] + 1]; Array[FromCharacterCode[ToCharacterCode[ToString[d[#]]] - 1] &, 100] (* Peter J. C. Moses, at request of Clark Kimberling, Feb 09 2012 *)
    Flatten[Table[FromDigits/@Tuples[{1,2},n],{n,5}]] (* Harvey P. Dale, Sep 13 2014 *)
  • PARI
    apply( {A007931(n)=fromdigits([d+1|d<-binary(n+1)[^1]])}, [1..44]) \\ M. F. Hasler, Nov 03 2020, replacing older code from Mar 26 2015
    
  • PARI
    /* inverse function */ apply( {A007931_inv(N)=fromdigits([d-1|d<-digits(N)],2)+2<M. F. Hasler, Nov 09 2020
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('1', '2').replace('0', '1'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 13 2021
    
  • Python
    def A007931(n): return int(s:=bin(n+1)[3:])+(10**(len(s))-1)//9 # Chai Wah Wu, Jun 13 2025

Formula

To get a(n), write n+1 in base 2, remove initial 1, add 1 to all remaining digits: e.g., eleven (11) in base 2 is 1011; remove initial 1 and add 1 to remaining digits: a(10)=122. - Clark Kimberling, Mar 11 2003
Conversely, given a(n), to get n: subtract 1 from all digits, prefix with an initial 1, convert this binary number to base 10, subtract 1. E.g., a(6)=22 -> 11 -> 111 -> 7 -> 6. - N. J. A. Sloane, Jul 09 2012
a(n) = A053645(n+1)+A002275(A000523(n)) = a(n-2^b(n))+10^b(n) where b(n) = A059939(n) = floor(log_2(n+1)-1). - Henry Bottomley, Feb 14 2001
From Hieronymus Fischer, Jun 06 2012 and Jun 08 2012: (Start)
The formulas are designed to calculate base-10 numbers only using the digits 1 and 2.
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 2)*10^j, where m = floor(log_2(n+1)), b(j) = floor((n+1-2^m)/(2^j)).
Special values:
a(k*(2^n-1)) = k*(10^n-1)/9, k= 1,2.
a(3*2^n-2) = (11*10^n-2)/9 = 10^n+2*(10^n-1)/9.
a(2^n-2) = 2*(10^(n-1)-1)/9, n>1.
Inequalities:
a(n) <= (10^log_2(n+1)-1)/9, equality holds for n=2^k-1, k>0.
a(n) > (2/10)*(10^log_2(n+1)-1)/9.
Lower and upper limits:
lim inf a(n)/10^log_2(n) = 1/45, for n --> infinity.
lim sup a(n)/10^log_2(n) = 1/9, for n --> infinity.
G.f.: g(x) = (1/(x(1-x)))*sum_{j=0..infinity} 10^j* x^(2*2^j)*(1 + 2 x^2^j)/(1 + x^2^j).
Also: g(x) = (1/(1-x))*(h_(2,0)(x) + h_(2,1)(x) - 2*h_(2,2)(x)), where h_(2,k)(x) = sum_{j>=0} 10^j*x^(2^(j+1)-1)*x^(k*2^j)/(1-x^2^(j+1)).
Also: g(x) = (1/(1-x)) sum_{j>=0} (1 - 3(x^2^j)^2 + 2(x^2^j)^3)*x^2^j*f_j(x)/(1-x^2^j), where f_j(x) = 10^j*x^(2^j-1)/(1-(x^2^j)^2). The f_j obey the recurrence f_0(x) = 1/(1-x^2), f_(j+1)(x) = 10x*f_j(x^2). (End)

Extensions

Some crossrefs added by Hieronymus Fischer, Jun 06 2012
Edited by M. F. Hasler, Mar 26 2015

A059943 Toss a fair coin and calculate the expected time until the n-th possible finite sequence of Heads and Tails first appears (ordered by length of sequence and alphabetical order so H, T, HH, HT, TH, TT, HHH, etc.).

Original entry on oeis.org

2, 2, 6, 4, 4, 6, 14, 8, 10, 8, 8, 10, 8, 14, 30, 16, 18, 16, 18, 20, 18, 16, 16, 18, 20, 18, 16, 18, 16, 30, 62, 32, 34, 32, 38, 32, 34, 32, 34, 36, 42, 32, 34, 36, 34, 32, 32, 34, 36, 34, 32, 42, 36, 34, 32, 34, 32, 38, 32, 34, 32, 62, 126, 64, 66, 64, 70, 64, 66, 64, 70, 72
Offset: 1

Views

Author

Henry Bottomley, Feb 14 2001

Keywords

Comments

Note the apparent paradox: HHHHHH, HTHTHT and HHHFFF are all equally likely to appear in six tosses of the coin (1/64) and in a long sequence each is expected to appear as a subsequence roughly as many times as the others, but the expected time for HHHHHH to first appear (126) is almost twice as long as for HHHFFF (64), with HTHTHT between the two (84). This is related to the fact that in a sequence of, say, 8 successive tosses, HHHHHH could appear as a subsequence 3 times simultaneously, HTHTHT twice but HHHTTT only once.

Examples

			a(35)=38 since the expected time from xxxHHTH to completion of xxxHHTHH is 20, from xxxHHT to completion is 30, from xxxHH to completion is 32, from xxxH to completion is 36 and from xxx to completion is 38 (xxx is an earlier subsequence, perhaps empty, which cannot contribute to completion).
		

References

  • M. Gardner, Chapter 5 in Time Travel and Other Mathematical Bewilderments, W. H. Freeman, 1988, pp. 63-67.
  • Michael Hochster in sci.math and sci.stat.math quoting from Stochastic Processes by Sheldon Ross.

Crossrefs

Programs

  • Haskell
    a059943 = (* 2) . a059942  -- Reinhard Zumkeller, Apr 03 2014
  • Mathematica
    a[n_] := (id = Drop[ IntegerDigits[n+1, 2], 1]+1; an={}; Do[PrependTo[an, If[Take[id, k] == Take[id, -k], 1, 0]], {k, 1, Length[id]}]; 2*FromDigits[an, 2]); Table[a[n], {n, 1, 72}] (* Jean-François Alcover, Nov 21 2011 *)

Formula

a(n) = 2*A059942(n). For the n-th sequence S (e.g., the 35th is HHTHH), create the set X consisting of subsequences of S which appear both at the beginning and end of S (e.g., X={H, HH, HHTHH}), then a(n) = sum_x(2^length(x)|x is in X) (e.g., a(35)=2^1+2^2+2^5=38).
Showing 1-3 of 3 results.