cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059973 Expansion of x*(1 + x - 2*x^2) / ( 1 - 4*x^2 - x^4).

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 17, 38, 72, 161, 305, 682, 1292, 2889, 5473, 12238, 23184, 51841, 98209, 219602, 416020, 930249, 1762289, 3940598, 7465176, 16692641, 31622993, 70711162, 133957148, 299537289, 567451585, 1268860318, 2403763488, 5374978561
Offset: 0

Views

Author

H. Peter Aleff (hpaleff(AT)earthlink.net), Mar 05 2001

Keywords

Comments

Based on fact that cube root of (2 +- 1 sqrt(5)) = sixth root of (9 +- 4 sqrt(5)) = ninth root of (38 +- 17 sqrt(5)) = ... = phi or 1/phi, where phi is the golden ratio.
Osler gives the first three of the above equalities with phi on page 27, stating they are simplified expressions from Ramanujan, but without hinting that the series continues.
Bisections: A001076 and A001077.

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 17*x^6 + 38*x^7 + 72*x^8 + 161*x^9 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

Programs

  • Magma
    I:=[0,1,1,2]; [n le 4 select I[n] else 4*Self(n-2)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Oct 10 2015
    
  • Mathematica
    CoefficientList[ Series[(x +x^2 -2x^3)/(1 -4x^2 -x^4), {x, 0, 33}], x]
    LinearRecurrence[{0,4,0,1}, {0,1,1,2}, 50] (* Vincenzo Librandi, Oct 10 2015 *)
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( (-2*x + x^2 + x^3) / (1 + 4*x^2 - x^4) + x*O(x^n), n), polcoeff( (x + x^2 - 2*x^3) / ( 1 - 4*x^2 - x^4) + x*O(x^n), n))} /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n) = if (n < 4, fibonacci(n), 4*a(n-2) + a(n-4));
    vector(50, n, a(n-1)) \\ Altug Alkan, Oct 04 2015
    
  • Sage
    def a(n): return fibonacci(n) if (n<4) else 4*a(n-2) + a(n-4)
    [a(n) for n in [0..40]] # G. C. Greubel, Jul 12 2021

Formula

From Michael Somos, Aug 11 2009: (Start)
a(2*n) = A001076(n).
a(2*n+1) = A001077(n). (End)
Recurrence: a(n) = 4*a(n-2) + a(n-4) for n >= 4; a(0)=0, a(1)=a(2)=1, a(3)=2. - Werner Schulte, Oct 03 2015
From Altug Alkan, Oct 06 2015: (Start)
a(2n) = Sum_{k=0..2n-1} a(k).
a(2n+1) = A001076(n-1) + Sum_{k=0..2n} a(k), n>0. (End)

Extensions

Edited by Randall L Rathbun, Jan 11 2002
More terms from Sascha Kurz, Jan 31 2003
I made the old definition into a comment and gave the g.f. as an explicit definition. - N. J. A. Sloane, Jan 05 2011
Moved g.f. from Michael Somos, into name to match terms. - Paul D. Hanna, Jan 12 2011