A059973 Expansion of x*(1 + x - 2*x^2) / ( 1 - 4*x^2 - x^4).
0, 1, 1, 2, 4, 9, 17, 38, 72, 161, 305, 682, 1292, 2889, 5473, 12238, 23184, 51841, 98209, 219602, 416020, 930249, 1762289, 3940598, 7465176, 16692641, 31622993, 70711162, 133957148, 299537289, 567451585, 1268860318, 2403763488, 5374978561
Offset: 0
Examples
G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 17*x^6 + 38*x^7 + 72*x^8 + 161*x^9 + ... - _Michael Somos_, Aug 11 2009
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- T. J. Osler, Cardan polynomials and the reduction of radicals, Math. Mag., 74 (No. 1, 2001), 26-32.
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,1).
Programs
-
Magma
I:=[0,1,1,2]; [n le 4 select I[n] else 4*Self(n-2)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Oct 10 2015
-
Mathematica
CoefficientList[ Series[(x +x^2 -2x^3)/(1 -4x^2 -x^4), {x, 0, 33}], x] LinearRecurrence[{0,4,0,1}, {0,1,1,2}, 50] (* Vincenzo Librandi, Oct 10 2015 *)
-
PARI
{a(n) = if( n<0, n = -n; polcoeff( (-2*x + x^2 + x^3) / (1 + 4*x^2 - x^4) + x*O(x^n), n), polcoeff( (x + x^2 - 2*x^3) / ( 1 - 4*x^2 - x^4) + x*O(x^n), n))} /* Michael Somos, Aug 11 2009 */
-
PARI
a(n) = if (n < 4, fibonacci(n), 4*a(n-2) + a(n-4)); vector(50, n, a(n-1)) \\ Altug Alkan, Oct 04 2015
-
Sage
def a(n): return fibonacci(n) if (n<4) else 4*a(n-2) + a(n-4) [a(n) for n in [0..40]] # G. C. Greubel, Jul 12 2021
Formula
From Michael Somos, Aug 11 2009: (Start)
a(2*n) = A001076(n).
a(2*n+1) = A001077(n). (End)
Recurrence: a(n) = 4*a(n-2) + a(n-4) for n >= 4; a(0)=0, a(1)=a(2)=1, a(3)=2. - Werner Schulte, Oct 03 2015
From Altug Alkan, Oct 06 2015: (Start)
a(2n) = Sum_{k=0..2n-1} a(k).
a(2n+1) = A001076(n-1) + Sum_{k=0..2n} a(k), n>0. (End)
Extensions
Edited by Randall L Rathbun, Jan 11 2002
More terms from Sascha Kurz, Jan 31 2003
I made the old definition into a comment and gave the g.f. as an explicit definition. - N. J. A. Sloane, Jan 05 2011
Moved g.f. from Michael Somos, into name to match terms. - Paul D. Hanna, Jan 12 2011
Comments