cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060481 Number of orbits of length n in a map whose periodic points come from A059991.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 9, 0, 28, 24, 93, 20, 315, 288, 1091, 0, 3855, 3626, 13797, 3264, 49929, 47616, 182361, 2720, 671088, 645120, 2485504, 599040, 9256395, 8947294, 34636833, 0, 130150493, 126320640, 490853403, 119302820, 1857283155, 1808400384, 7048151355
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jan 15 2018: (Start)
Terms a(2)-a(20) of this sequence and sequence A000048 appear on p. 311 of Sommerville (1909) in the context of sequences of "evolutes" of cyclic compositions of positive integers.
Algebraically, it is easy to prove that this sequence and sequence A000048 have the same odd-indexed terms. (End)

Crossrefs

Formula

If b(n) is the n-th term of A059991, then a(n) = (1/n)* Sum_{d|n} mu(d)*b(n/d). [Corrected by Petros Hadjicostas, Jan 14 2018]
From Petros Hadjicostas, Jan 14 2018: (Start)
a(2*n-1) = A000048(2*n-1) for n >= 1.
a(2^m) = 0 for m >= 1.
G.f.: If B(x) is the g.f. of the sequence b(n) = A059991(n) and C(x) = integrate(B(y)/y, y = 0..x), then the g.f. of the current sequence is A(x) = Sum_{n>=1} (mu(n)/n)*C(x^n). (End)

Extensions

a(18)-a(30) by Petros Hadjicostas, Jan 15 2018

A129760 Bitwise AND of binary representation of n-1 and n.

Original entry on oeis.org

0, 0, 2, 0, 4, 4, 6, 0, 8, 8, 10, 8, 12, 12, 14, 0, 16, 16, 18, 16, 20, 20, 22, 16, 24, 24, 26, 24, 28, 28, 30, 0, 32, 32, 34, 32, 36, 36, 38, 32, 40, 40, 42, 40, 44, 44, 46, 32, 48, 48, 50, 48, 52, 52, 54, 48, 56, 56, 58, 56, 60, 60, 62, 0, 64, 64, 66, 64, 68, 68, 70, 64, 72, 72, 74
Offset: 1

Views

Author

Russ Cox, May 15 2007

Keywords

Comments

Also the number of Ducci sequences with period n.
Also largest number less than n having in binary representation fewer ones than n has; A048881(n-1) = A000120(a(n)) = A000120(n)-1. - Reinhard Zumkeller, Jun 30 2010
a(n) is the parent of vertex n in the binomial tree. The binomial tree is root vertex n=0, then for n>=1 the parent of n is n with its least significant 1-bit changed to a 0-bit. Binomial tree order 5, n=0 to 31 inclusive, is the frontispiece of Knuth volume 1, second and subsequent editions. Vertices are shown there with n in binary dots and a(n) is the next vertex towards the root at the bottom of the page. - Kevin Ryde, Jul 24 2019

Examples

			a(6) = 6 AND 5 = binary 110 AND 101 = binary 100 = 4.
		

References

  • Donald E. Knuth, The Art of Computer Programming, volume 1, second edition, frontispiece. Reproduced with brief description of the art in Donald E. Knuth, Selected Papers on Fun and Games, 2010, Chapter 47 Geek Art, figure 16, page 679.

Crossrefs

Programs

  • C
    int a(int n) { return n & (n-1); }
    
  • Magma
    [n - 2^Valuation(n, 2): n in [1..100]]; // Vincenzo Librandi, Jul 25 2019
    
  • Maple
    nmax := 75: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (2*n-2) * 2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jun 22 2011, revised Jan 25 2013
    A129760 := n -> Bits:-And(n-1, n):
    seq(A129760(n), n=1..75); # Peter Luschny, Sep 26 2019
  • Mathematica
    Table[BitAnd[n, n - 1], {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
  • PARI
    a(n)=bitand(n,n-1) \\ Charles R Greathouse IV, Jun 23 2011
    
  • Python
    def a(n): return n & (n-1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jul 13 2022

Formula

a(n) = n AND n-1.
Equals n - A006519(n). - N. J. A. Sloane, May 26 2008
From Johannes W. Meijer, Jun 22 2011: (Start)
a((2*n-1)*2^p) = (2*n-2)*(2^p), p>=0.
a(2*n-1) = (2*n-2), n>=1, and a(2^p+1) = 2^p, p>=1. (End)

A059990 Number of points of period n under the dual of the map x->2x on Z[1/6].

Original entry on oeis.org

1, 1, 7, 5, 31, 7, 127, 85, 511, 341, 2047, 455, 8191, 5461, 32767, 21845, 131071, 9709, 524287, 349525, 2097151, 1398101, 8388607, 1864135, 33554431, 22369621, 134217727, 89478485, 536870911, 119304647
Offset: 1

Views

Author

Thomas Ward, Mar 08 2001

Keywords

Comments

This sequence counts the periodic points in the simplest nontrivial S-integer dynamical system. These dynamical systems arise naturally in arithmetic and are built by making an isometric extension of a familiar hyperbolic system. The extension destroys some of the periodic points, in this case reducing the original number 2^n-1 by factoring out any 3's. An interesting feature is that the logarithmic growth rate is still log 2.
A059990[n+7] times some power of 3 seems to me the greatest common Denominator of A035522[4n+16+1],A035522[4n+16+2],A035522[4n+16+3] and A035522[4n+16+4] for n>1 [From Dylan Hamilton, Aug 04 2010]

Examples

			a(6)=7 because 2^6-1 = 3^2x7, so |2^6-1|_3=3^(-2).
		

References

  • V. Chothi, G. Everest, T. Ward. S-integer dynamical systems: periodic points. J. Reine Angew. Math., 489 (1997), 99-132.
  • T. Ward. Almost all S-integer dynamical systems have many periodic points. Erg. Th. Dynam. Sys. 18 (1998), 471-486.

Crossrefs

Formula

a(n)=(2^n-1)x|2^n-1|_3
Showing 1-3 of 3 results.