cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060013 New record highs reached in A060000.

Original entry on oeis.org

1, 2, 3, 5, 9, 15, 27, 51, 99, 195, 387, 771, 1539, 3075, 6147, 12291, 24579, 49155, 98307, 196611, 393219, 786435, 1572867, 3145731, 6291459, 12582915, 25165827, 50331651, 100663299, 201326595, 402653187, 805306371, 1610612739, 3221225475, 6442450947, 12884901891
Offset: 1

Views

Author

Robert G. Wilson v, Mar 15 2001

Keywords

Crossrefs

Programs

  • Mathematica
    h = f = {1, 2}; a = 1; b = 2; Do[ g = Sort[ h ]; If[ g[ [ -1 ] ] + 1 == n, c = a + b, k = 1; While[ g[ [ k ] ] == k, k++ ]; c = k ]; a = b; b = c; h = Append[ h, c ]; If[ c > g[ [ -1 ] ], f = Append[ f, c ] ], { n, 3, 10^4 } ]; f
    LinearRecurrence[{3,-2},{1,2,3,5,9,15},40] (* Harvey P. Dale, Dec 12 2018 *)

Formula

For n>4: a(n) = 2*a(n-1)-3. For n>3: a(n) = 3*2^(n-3)+3 = 3*A000051(n-3) = A007283(n-3)+3.
a(n+1) = A060000(a(n)+1), a(1) = 1. - Reinhard Zumkeller, Mar 04 2008
G.f.: -x*(x^2-x+1)*(2*x^3+2*x^2-1) / ((x-1)*(2*x-1)). - Colin Barker, Jan 12 2013
E.g.f.: (144*exp(x) + 9*exp(2*x) - 153 - 114*x - 42*x^2 - 12*x^3 - 2*x^4)/48. - Stefano Spezia, Jul 25 2024

Extensions

Formulae and more terms from Henry Bottomley and Larry Reeves (larryr(AT)acm.org), Mar 19 2001