cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A060482 New record highs reached in A060030.

Original entry on oeis.org

1, 2, 3, 5, 9, 13, 21, 29, 45, 61, 93, 125, 189, 253, 381, 509, 765, 1021, 1533, 2045, 3069, 4093, 6141, 8189, 12285, 16381, 24573, 32765, 49149, 65533, 98301, 131069, 196605, 262141, 393213, 524285, 786429, 1048573, 1572861, 2097149, 3145725, 4194301, 6291453
Offset: 1

Views

Author

Henry Bottomley, Mar 19 2001

Keywords

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2},{1,2,3,5,9},50] (* Harvey P. Dale, Sep 11 2016 *)
  • PARI
    { for (n=1, 1000, if (n%2==0, m=n/2; a=2^(m + 1) - 3, m=(n - 1)/2; a=3*2^m - 3); if (n<3, a=n); write("b060482.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 05 2009

Formula

a(n) = a(n-1) + 2^((n-1)/2) = 2*a(n-2) + 3 = a(n-1) + A016116(n-1) = A027383(n-1) - 1 = 2*A027383(n-3) + 1 = 4*A052955(n-4) + 1. a(2n) = 2^(n+1) - 3; a(2n+1) = 3*2^n - 3.
From Colin Barker, Jan 12 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) for n > 5.
G.f.: x*(2*x^4-x^2+x+1) / ((x-1)*(2*x^2-1)). (End)
E.g.f.: 1 + x + x^2/2 - 3*cosh(x) + 2*cosh(sqrt(2)*x) - 3*sinh(x) + 3*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, Jul 25 2024

A060000 If the numbers a(1)...a(n) contain a hole, then a(n+1) is the smallest hole; otherwise a(n+1) = a(n-1) + a(n).

Original entry on oeis.org

1, 2, 3, 5, 4, 9, 6, 7, 8, 15, 10, 11, 12, 13, 14, 27, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 51, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 99, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Rainer Rosenthal, Mar 09 2001

Keywords

Comments

Let H be the set of positive numbers less than a(n) which are not equal to some a(i), i < n. This H is the 'set of holes so far'. If H is nonempty, then define a(n+1) = minimum(H). Otherwise define a(n+1) = a(n-1) + a(n).
Permutation of the natural numbers with inverse A099424.
A060013(n+1) = a(A060013(n)+1). - Reinhard Zumkeller, Mar 04 2008

Crossrefs

Programs

  • Haskell
    a060000 n = a060000_list !! (n-1)
    a060000_list = 1 : 2 : f 1 2 2 [] where
       f x y m []     = z : f y z z [m+1..z-1] where z = x + y
       f x y m (h:hs) = h : f y h m hs
    -- Reinhard Zumkeller, Sep 22 2011
  • Mathematica
    h = {1, 2}; a = 1; b = 2; Do[ g = Sort[ h ]; If[ g[ [ -1 ] ] + 1 == n, c = a + b, k = 1; While[ g[ [ k ] ] == k, k++ ]; c = k ]; a = b; b = c; h = Append[ h, c ], { n, 3, 100} ]; h
    (* faster program *) h = {1, 2, 3, 5, 4, 9}; lastSum = 9; Do[AppendTo[h, If[ ++akt < lastSum, akt, ++akt; lastSum = 2*lastSum - 3]], {akt, 5, 100}]; h (* Alfred Heiligenbrunner, Jun 05 2004 *)

Formula

a(k)=k-1 if k>=7 and k <> 2^m * 3 + 4; a(k)=(k-1)*2-3 if k>=7 and k == 2^m * 3 + 4. - Alfred Heiligenbrunner, Jun 08 2004

Extensions

More terms from Robert G. Wilson v and Larry Reeves (larryr(AT)acm.org), Mar 15 2001

A147595 a(n) is the number whose binary representation is A138144(n).

Original entry on oeis.org

1, 3, 7, 15, 27, 51, 99, 195, 387, 771, 1539, 3075, 6147, 12291, 24579, 49155, 98307, 196611, 393219, 786435, 1572867, 3145731, 6291459, 12582915, 25165827, 50331651, 100663299, 201326595, 402653187, 805306371, 1610612739, 3221225475
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    [1,3,7] cat [3*(1+2^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    LinearRecurrence[{3,-2},{1,3,7,15,27},40] (* Harvey P. Dale, Nov 30 2020 *)
  • PARI
    Vec(-x*(2*x^2-1)*(2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
    
  • SageMath
    [1,3,7]+[3*(1+2^(n-2)) for n in range(4,40)] # G. C. Greubel, Oct 25 2022

Formula

a(n) = A060013(n+2), n > 3. - R. J. Mathar, Feb 05 2010
a(n+4) = 3*(2^(n+2) + 1), n >= 0. - Brad Clardy, Apr 03 2013
From Colin Barker, Sep 15 2013: (Start)
a(n) = 3*(4 + 2^n)/4 for n>3.
a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: x*(1-2*x^2)*(1+2*x^2) / ((1-x)*(1-2*x)). (End)
E.g.f.: (3/4)*(4*exp(x) + exp(2*x)) - (15/4) - 7*x/2 - 3*x^2/2 - x^3/3. - G. C. Greubel, Oct 25 2022

Extensions

Extended by R. J. Mathar, Feb 05 2010

A138153 If the numbers a(1)...a(n) contain a hole, then a(n+1) is the smallest hole; otherwise a(n+1) = a(n-2) + a(n-1) + a(n).

Original entry on oeis.org

1, 2, 3, 6, 4, 5, 15, 7, 8, 9, 10, 11, 12, 13, 14, 39, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 111, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66
Offset: 1

Views

Author

Jonathan Vos Post, May 04 2008

Keywords

Comments

This is to A060000 as tribonacci A000073 is to Fibonacci A000045. Let H be the set of positive numbers less than a(n) which are not equal to some a(i), i < n. This H is the 'set of holes so far'. If H is nonempty, then define a(n+1) = minimum(H). Otherwise define a(n+1) = a(n-2) + a(n-1) + a(n). Permutation of the natural numbers with inverse not yet in the OEIS.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n < 4, n, Block[{s = Array[a, n-1]}, s = Complement[ Range[ Max@s], s]; If[s == {}, a[n - 1] + a[n - 2] + a[n - 3], First[s]]]]; Array[a, 80] (* Giovanni Resta, Jun 20 2016 *)

Extensions

Data corrected by Giovanni Resta, Jun 20 2016

A195116 a(n) = (2+3^n)*(3+2^n).

Original entry on oeis.org

12, 25, 77, 319, 1577, 8575, 48977, 286759, 1699817, 10137775, 60645377, 363332599, 2178384857, 13065493375, 78378545777, 470228096839, 2821239178697, 16927047127375, 101561119454177, 609363227843479, 3656168902513337, 21936982025631775
Offset: 0

Views

Author

Bruno Berselli, Sep 09 2011

Keywords

Crossrefs

Cf. A060013 ((1+2^n)*(2+1) with n>3).
Cf. A021029 (for the recurrence).

Programs

  • Magma
    [(2+3^n)*(3+2^n): n in [0..21]];
    
  • Mathematica
    Table[(2 + 3^n) (3 + 2^n), {n, 0, 30}] (* Vincenzo Librandi, Mar 26 2013 *)
  • PARI
    for(n=0, 21, print1((2+3^n)*(3+2^n)", "));
    
  • Python
    def a(n): return (2+3**n)*(3+2**n)
    print([a(n) for n in range(23)]) # Michael S. Branicky, Dec 25 2021

Formula

G.f.: (12-119*x+341*x^2-294*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-6*x)).
Sum_{i=0..n} a(i) = (1/10)*(12*6^n+45*3^n+40*2^n+60*n+23).
Showing 1-5 of 5 results.