cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A060028 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 9.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 10, 11, 16, 16, 22, 23, 29, 29, 36, 34, 41, 37, 40, 32, 32, 14, 6, -22, -44, -90, -130, -203, -270, -378, -487, -642, -803, -1027, -1260, -1568, -1899, -2320, -2774, -3342, -3955, -4706, -5526, -6507, -7579, -8854, -10243, -11872, -13656
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+8 into 8 parts and the number of partitions of n+8 into 9 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), this sequence (N=9), A060029 (N=10).

Programs

  • Mathematica
    With[{den=Times@@Table[(1-x^n),{n,9}]},CoefficientList[Series[(1-x-x^9)/ den,{x,0,60}],x]] (* Harvey P. Dale, May 22 2012 *)

Formula

a(n) = A026814(n+8) - A026815(n+8). - Wesley Ivan Hurt, Apr 16 2019

A060022 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 3.

Original entry on oeis.org

1, 0, 1, 0, 0, -1, -1, -3, -3, -5, -6, -8, -9, -12, -13, -16, -18, -21, -23, -27, -29, -33, -36, -40, -43, -48, -51, -56, -60, -65, -69, -75, -79, -85, -90, -96, -101, -108, -113, -120, -126, -133, -139, -147, -153, -161, -168, -176, -183, -192, -199, -208, -216, -225, -233, -243, -251, -261, -270, -280
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference between the number of partitions of n+2 into 2 parts and the number of partitions of n+2 into 3 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: this sequence (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10).

Programs

  • PARI
    Vec((1 - x - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, Apr 17 2019

Formula

a(n) = A004526(n+2) - A069905(n+2). - Wesley Ivan Hurt, Apr 16 2019
From Colin Barker, Apr 17 2019: (Start)
G.f.: (1 - x - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>5.
(End)

A060023 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 4.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, -1, -1, -3, -4, -7, -8, -13, -15, -20, -24, -31, -35, -44, -50, -60, -68, -80, -89, -104, -115, -131, -145, -164, -179, -201, -219, -243, -264, -291, -314, -345, -371, -404, -434, -471, -503, -544, -580, -624, -664, -712, -755, -808, -855, -911, -963, -1024, -1079, -1145
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+3 into 3 parts and the number of partitions of n+3 into 4 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), this sequence (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10).

Programs

  • Magma
    I:=[1,0,1,1,1,0,1,-1,-1,-3]; [n le 10 select I[n] else Self(n-1)+Self(n-2)-2*Self(n-5)+Self(n-8)+Self(n-9)-Self(n-10): n in [1..60]]; // Vincenzo Librandi, Jun 23 2015
    
  • Mathematica
    CoefficientList[Series[(1-x-x^4)/Times@@(1-x^Range[4]),{x,0,60}],x] (* or *) LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1},{1,0,1,1,1,0,1,-1,-1,-3},70] (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    Vec((1 - x - x^4) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, Apr 17 2019

Formula

a(n) = A069905(n+3) - A026810(n+3). - Wesley Ivan Hurt, Apr 16 2019
From Colin Barker, Apr 17 2019: (Start)
G.f.: (1 - x - x^4) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n>9.
(End)

A060024 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 5.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 1, 2, 0, 0, -3, -3, -8, -10, -16, -20, -29, -35, -47, -56, -72, -85, -105, -122, -148, -171, -202, -231, -270, -306, -353, -397, -453, -507, -573, -637, -715, -791, -881, -970, -1075, -1178, -1298, -1417, -1554, -1691, -1846, -2001, -2177, -2353, -2550, -2748, -2969
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+4 into 4 parts and the number of partitions of n+4 into 5 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), A060023 (N=4), this sequence (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10).

Programs

  • Mathematica
    CoefficientList[Series[(1-x-x^5)/(Times@@(1-x^Range[5])),{x,0,60}],x] (* or *) LinearRecurrence[{1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1},{1,0,1,1,2,1,2,1,2,0,0,-3,-3,-8,-10},60] (* Harvey P. Dale, Dec 21 2015 *)
  • PARI
    Vec((1 - x + x^2)*(1 - x^2 - x^3) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^40)) \\ Colin Barker, Apr 17 2019

Formula

a(0)=1, a(1)=0, a(2)=1, a(3)=1, a(4)=2, a(5)=1, a(6)=2, a(7)=1, a(8)=2, a(9)=0, a(10)=0, a(11)=-3, a(12)=-3, a(13)=-8, a(14)=-10, a(n) = a(n-1)+ a(n-2)-a(n-5)-a(n-6)-a(n-7)+a(n-8)+a(n-9)+a(n-10)-a(n-13)- a(n-14)+ a(n-15). - Harvey P. Dale, Dec 21 2015
a(n) = A026810(n+4) - A026811(n+4). - Wesley Ivan Hurt, Apr 16 2019
G.f.: (1 - x + x^2)*(1 - x^2 - x^3) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Apr 17 2019

A060026 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 7.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 3, 5, 5, 7, 6, 9, 6, 8, 5, 5, -1, -2, -13, -18, -33, -45, -68, -86, -121, -151, -198, -244, -310, -373, -464, -553, -671, -793, -948, -1107, -1309, -1517, -1771, -2039, -2360, -2696, -3098, -3519, -4011, -4534, -5137, -5774, -6508, -7283, -8163, -9099, -10153, -11269
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+6 into 6 parts and the number of partitions of n+6 into 7 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), this sequence (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10).

Programs

  • Mathematica
    With[{nn=7},CoefficientList[Series[(1-x-x^nn)/Times@@(1-x^Range[nn]),{x,0,60}],x]] (* Harvey P. Dale, May 15 2016 *)

Formula

a(n) = A026812(n+6) - A026813(n+6). - Wesley Ivan Hurt, Apr 16 2019

A060027 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 8.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 12, 16, 15, 18, 15, 18, 12, 12, 2, -3, -20, -31, -59, -81, -122, -160, -222, -280, -369, -457, -581, -708, -878, -1055, -1286, -1528, -1833, -2158, -2559, -2985, -3504, -4059, -4721, -5433, -6271, -7172, -8224, -9355, -10660, -12067
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+7 into 7 parts and the number of partitions of n+7 into 8 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), this sequence (N=8), A060028 (N=9), A060029 (N=10).

Programs

  • Mathematica
    With[{nn=8},CoefficientList[Series[(1-x-x^nn)/Times@@(1-x^Range[nn]),{x,0,60}],x]] (* Harvey P. Dale, May 15 2016 *)

Formula

a(n) = A026813(n+7) - A026814(n+7). - Wesley Ivan Hurt, Apr 16 2019

A060029 Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 10.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 11, 12, 18, 19, 26, 29, 37, 40, 51, 53, 65, 68, 79, 80, 92, 87, 94, 84, 82, 58, 45, -1, -36, -109, -180, -297, -413, -594, -780, -1042, -1325, -1704, -2112, -2647, -3228, -3961, -4772, -5769, -6867, -8206, -9682, -11446, -13402, -15710
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2001

Keywords

Comments

Difference of the number of partitions of n+9 into 9 parts and the number of partitions of n+9 into 10 parts. - Wesley Ivan Hurt, Apr 16 2019

Crossrefs

Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), this sequence (N=10).

Programs

  • Mathematica
    CoefficientList[Series[(1-x-x^10)/Times@@(1-x^Range[10]),{x,0,60}],x] (* Harvey P. Dale, May 15 2016 *)

Formula

a(n) = A026815(n+9) - A026816(n+9). - Wesley Ivan Hurt, Apr 16 2019
Showing 1-7 of 7 results.