A060217 Number of orbits of length n under the full 14-shift (whose periodic points are counted by A001023).
14, 91, 910, 9555, 107562, 1254435, 15059070, 184468830, 2295671560, 28925411697, 368142288150, 4724492067295, 61054982558010, 793714765724595, 10371206370484778, 136122083520848880, 1793608631137129170, 23715491899442676060, 314542313628890231430, 4183412771249777343369
Offset: 1
Examples
a(2)=91 since there are 196 points of period 2 in the full 14-shift and 14 fixed points, so there must be (196-14)/2 = 91 orbits of length 2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..870
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- T. Ward, Exactly realizable sequences
Programs
-
Magma
A060217:= func< n | (&+[MoebiusMu(d)*14^Floor(n/d): d in Divisors(n)])/n >; [A060217(n): n in [1..40]]; // G. C. Greubel, Aug 01 2024
-
Mathematica
A060217[n_]:= DivisorSum[n, MoebiusMu[#]*14^(n/#) &]/n; Table[A060217[n], {n,40}] (* G. C. Greubel, Aug 01 2024 *)
-
PARI
a001023(n) = 14^n; a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001023(n/d)); \\ Michel Marcus, Sep 11 2017
-
SageMath
def A060217(n): return sum(moebius(k)*14^(n//k) for k in (1..n) if (k).divides(n))/n [A060217(n) for n in range(1,41)] # G. C. Greubel, Aug 01 2024
Formula
a(n) = (1/n)* Sum_{d|n} mu(d)*A001023(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 14*x^k))/k. - Ilya Gutkovskiy, May 19 2019
Extensions
More terms from Michel Marcus, Sep 11 2017
Comments