cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060218 Number of orbits of length n under the full 15-shift (whose periodic points are counted by A001024).

Original entry on oeis.org

15, 105, 1120, 12600, 151872, 1897840, 24408480, 320355000, 4271484000, 57664963104, 786341441760, 10812193870800, 149707312950720, 2085208989609360, 29192926025339776, 410525522071875000, 5795654431511374080, 82105104444274758000, 1166756747396368729440, 16626283650369421872480
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

Number of Lyndon words (aperiodic necklaces) with n beads of 15 colors. - Andrew Howroyd, Dec 10 2017

Examples

			a(2)=105 since there are 225 points of period 2 in the full 15-shift and 15 fixed points, so there must be (225-15)/2 = 105 orbits of length 2.
		

Crossrefs

Column 15 of A074650.
Cf. A001024.

Programs

  • Magma
    A060218:= func< n | (&+[MoebiusMu(d)*15^Floor(n/d): d in Divisors(n)])/n >;
    [A060218(n): n in [1..40]]; // G. C. Greubel, Aug 01 2024
    
  • Maple
    f:= n -> 1/n*add(numtheory:-mobius(d)*15^(n/d), d = numtheory:-divisors(n)):
    map(f, [$1..30]); # Robert Israel, Oct 28 2018
  • Mathematica
    A060218[n_]:= DivisorSum[n, MoebiusMu[#]*15^(n/#) &]/n;
    Table[A060218[n], {n, 40}] (* G. C. Greubel, Aug 01 2024 *)
  • PARI
    a001024(n) = 15^n;
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001024(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A060218(n): return sum(moebius(k)*15^(n//k) for k in (1..n) if (k).divides(n))/n
    [A060218(n) for n in range(1,41)] # G. C. Greubel, Aug 01 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001024(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 15*x^k))/k. - Ilya Gutkovskiy, May 19 2019

Extensions

More terms from Michel Marcus, Sep 11 2017