cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060220 Number of orbits of length n under the full 17-shift (whose periodic points are counted by A001026).

Original entry on oeis.org

17, 136, 1632, 20808, 283968, 4022064, 58619808, 871959240, 13176430176, 201599248032, 3115626937056, 48551851084080, 761890617915840, 12026987582075856, 190828203433892736, 3041324491793194440, 48661191875666868480, 781282469552728498992, 12582759772902701307744
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

Number of monic irreducible polynomials of degree n over GF(17). - Andrew Howroyd, Dec 10 2017

Examples

			a(2)=136 since there are 289 points of period 2 in the full 17-shift and 17 fixed points, so there must be (289-17)/2 = 136 orbits of length 2.
		

Crossrefs

Column 17 of A074650.

Programs

  • Magma
    A060220:= func< n | (1/n)*(&+[MoebiusMu(d)*(17)^Floor(n/d): d in Divisors(n)]) >;
    [A060220(n): n in [1..40]]; // G. C. Greubel, Sep 13 2024
    
  • Mathematica
    A060220[n_]:= DivisorSum[n, (17)^(n/#)*MoebiusMu[#] &]/n;
    Table[A060220[n], {n,40}] (* G. C. Greubel, Sep 13 2024 *)
  • PARI
    a001024(n) = 17^n;
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001024(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A060220(n): return (1/n)*sum(moebius(k)*(17)^(n/k) for k in (1..n) if (k).divides(n))
    [A060220(n) for n in range(1,41)] # G. C. Greubel, Sep 13 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001026(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 17*x^k))/k. - Ilya Gutkovskiy, May 20 2019

Extensions

More terms from Michel Marcus, Sep 11 2017