cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060221 Number of orbits of length n under the full 18-shift (whose periodic points are counted by A001027).

Original entry on oeis.org

18, 153, 1938, 26163, 377910, 5667681, 87460002, 1377481950, 22039920504, 357046533675, 5842582734474, 96402612275775, 1601766528128550, 26772383354990049, 449776041098370870, 7589970692848393200, 128583032925805678350, 2185911559727674682148, 37275544492386193492506
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

Number of Lyndon words (aperiodic necklaces) with n beads of 18 colors. - Andrew Howroyd, Dec 10 2017

Examples

			a(2)=153 since there are 324 points of period 2 in the full 18-shift and 18 fixed points, so there must be (324-18)/2 = 153 orbits of length 2.
		

Crossrefs

Column 18 of A074650.

Programs

  • Magma
    A060221:= func< n | (1/n)*(&+[MoebiusMu(d)*(18)^Floor(n/d): d in Divisors(n)]) >;
    [A060221(n): n in [1..40]]; // G. C. Greubel, Sep 13 2024
    
  • Mathematica
    A060221[n_]:= DivisorSum[n, (18)^(n/#)*MoebiusMu[#] &]/n;
    Table[A060221[n], {n, 40}] (* G. C. Greubel, Sep 13 2024 *)
  • PARI
    a001027(n) = 18^n;
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001027(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A060221(n): return (1/n)*sum(moebius(k)*(18)^(n/k) for k in (1..n) if (k).divides(n))
    [A060221(n) for n in range(1,41)] # G. C. Greubel, Sep 13 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001027(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 18*x^k))/k. - Ilya Gutkovskiy, May 20 2019

Extensions

More terms from Michel Marcus, Sep 11 2017