A060223 Number of orbits of length n under the map whose periodic points are counted by A000670.
1, 1, 1, 4, 18, 108, 778, 6756, 68220, 787472, 10224702, 147512052, 2340963570, 40527565260, 760095923082, 15352212731820, 332228417589720, 7668868648772700, 188085259069430744, 4884294069438337428, 133884389812214097774, 3863086904690670182596
Offset: 0
Examples
a(5) = 108 since A000670(5) is 541 and A000670(1) is 1, so there must be (541-1)/5 = 108 orbits of length 5. From _Gus Wiseman_, Oct 14 2016: (Start) The a(4) = 18 normal prime sequences are the columns: [2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4] [1 2 2 1 1 1 2 2 2 2 3 3 1 1 2 2 3 3] [1 1 2 1 2 2 1 1 2 3 1 2 2 3 1 3 1 2] [1 1 1 2 1 2 1 2 1 1 2 1 3 2 3 1 2 1]. The symmetric function A(x_1,x_2,x_3,...) expanded in terms of monomial symmetric functions m(y) (indexed by integer partitions y) is equal to: A = m(1) + m(11) + (2*m(21) + 2*m(111) + (m(22) + 2*m(31) + 9*m(211) + 6*m(1111)) + (4*m(32) + 2*m(41) + 18*m(221) + 12*m(311) + 48*m(2111) + 24*m(11111)) + (3*m(33) + 4*m(42) + 2*m(51) + 14*m(222) + 60*m(321) + 15*m(411) + 180*m(2211) + 80*m(3111) + 300*m(21111) + 120*m(111111)) + ... (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- T. Ward, Exactly realizable sequences
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSum[n, MoebiusMu[#] HurwitzLerchPhi[1/2, -n/#, 0]/2 &] / n; a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2016 *) thufbin[{},b_List]:=b;thufbin[a_List,{}]:=a;thufbin[a_List]:=a; thufbin[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{thufbin[{a},{x,b}],thufbin[{x,a},{b}]}]],{1,2},Prepend[thufbin[{a},{y,b}],x],{2,1},Prepend[thufbin[{x,a},{b}],y]]; thufbin[a_List,b_List,c__List]:=thufbin[a,thufbin[b,c]]; priseqs[n_]:=Fold[Select,Tuples[Range[n],n],{Union[#]===Range[First[#]]&,Function[q,Select[Table[List[Take[q,{1,j}],Take[q,{j+1,n}]],{j,1,n-1}],thufbin@@Sort[#]===q&,1]==={}]}]; Table[Length[priseqs[n]],{n,1,7}] (* Gus Wiseman, Oct 14 2016 *)
-
PARI
\\ here b(n) is A000670 b(n)={polcoeff(serlaplace(1/(2-exp(x+O(x*x^n)))), n)} a(n)={if(n<1, n==0, sumdiv(n, d, moebius(d)*b(n/d))/n)} \\ Andrew Howroyd, Dec 12 2017
Formula
a(n) = (1/n)* Sum_{d|n} mu(d)*A000670(n/d) for n > 0, where mu is A008683, the Moebius function. - Edited by Michel Marcus, Mar 30 2016
Let A = Sum_{q in P} Prod_i x_{q_i} = Sum_y c_y m(y) be the symmetric function whose coefficient of m(y) is equal to the number of permutations of the normal multiset [k]^y that belong to P, where the multiplicity of i in [k]^y is defined to be y_i. Then a(n) is the sum of c_y taken over all integer partitions of n. See example 3. - Gus Wiseman, Oct 14 2016
a(n) = Sum_{d|n} mu(d) * A019536(n/d) for n >= 1. - Petros Hadjicostas, Aug 19 2019
Extensions
More terms from Alois P. Heinz, Jan 23 2015
Comments