cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060238 a(n) = det(M) where M is an n X n matrix with M[i,j] = lcm(i,j).

Original entry on oeis.org

1, 1, -2, 12, -48, 960, 11520, -483840, 3870720, -69672960, -2786918400, 306561024000, 7357464576000, -1147764473856000, -96412215803904000, -11569465896468480000, 185111454343495680000, -50350315581430824960000, -1812611360931509698560000
Offset: 0

Views

Author

MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001

Keywords

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
  • J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.

Crossrefs

Programs

Formula

For n >= 2, a(n) = n! * Product_{j=2..n} Product_{p|j} (1-p) (where the second product is over all primes p that divide j) (cf. A023900). - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
a(n) = n! * Product_{p<=n} (1-p)^floor(n/p) where the product runs through the primes. - Benoit Cloitre, Jan 31 2008
a(n) = A000142(n) * A085542(n). - Enrique Pérez Herrero, Jun 08 2010
a(n) = A001088(n) * A048803(n) * (-1)^A013939(n). - Amiram Eldar, Dec 19 2018
a(n) = Product_{k=1..n} (-1)^A001221(k) * A000010(k) * A007947(k) [De Koninck & Mercier]. - Bernard Schott, Dec 11 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 25 2023