A060238 a(n) = det(M) where M is an n X n matrix with M[i,j] = lcm(i,j).
1, 1, -2, 12, -48, 960, 11520, -483840, 3870720, -69672960, -2786918400, 306561024000, 7357464576000, -1147764473856000, -96412215803904000, -11569465896468480000, 185111454343495680000, -50350315581430824960000, -1812611360931509698560000
Offset: 0
Keywords
References
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
- J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 0..200
- Index to sequences related to determinants.
Programs
-
Maple
A060238:=n->n!*mul((1-ithprime(i))^floor(n/ithprime(i)), i=1..numtheory[pi](n)): seq(A060238(n), n=0..20); # Wesley Ivan Hurt, Aug 15 2016
-
Mathematica
A060238[n_]:=n!*Product[(1 - Prime[i])^Floor[n/Prime[i]], {i, PrimePi[n]}]; Array[A060238, 20] (* Enrique Pérez Herrero, Jun 08 2010 *)
-
PARI
a(n)=n!*prod(p=1,sqrtint(n),if(isprime(p),(1-p)^floor(n/p),1)) \\ Benoit Cloitre, Jan 31 2008
Formula
For n >= 2, a(n) = n! * Product_{j=2..n} Product_{p|j} (1-p) (where the second product is over all primes p that divide j) (cf. A023900). - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
a(n) = n! * Product_{p<=n} (1-p)^floor(n/p) where the product runs through the primes. - Benoit Cloitre, Jan 31 2008
a(n) = Product_{k=1..n} (-1)^A001221(k) * A000010(k) * A007947(k) [De Koninck & Mercier]. - Bernard Schott, Dec 11 2020
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 25 2023