A060300 a(n) = (2*n*(n+1))^2.
0, 16, 144, 576, 1600, 3600, 7056, 12544, 20736, 32400, 48400, 69696, 97344, 132496, 176400, 230400, 295936, 374544, 467856, 577600, 705600, 853776, 1024144, 1218816, 1440000, 1690000, 1971216, 2286144, 2637376, 3027600, 3459600, 3936256, 4460544, 5035536, 5664400
Offset: 0
References
- C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY, 1966, pp. 90-92.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(2*n*(n+1))^2: n in [0..30]]; // Vincenzo Librandi, Nov 18 2016
-
Mathematica
CoefficientList[Series[16 x (1 + 4 x + x^2) / (1 - x)^5, {x, 0, 33}], x] (* Vincenzo Librandi, Nov 18 2016 *) Table[(2n(n+1))^2,{n,0,30}] (* Harvey P. Dale, Jan 19 2019 *)
-
PARI
a(n) = { (2*n*(n + 1))^2 } \\ Harry J. Smith, Jul 03 2009
Formula
G.f.: 16*x*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Apr 22 2012
a(n) = 16*A000537(n) = 16*(n*(n+1)/2)^2 = 16*A000217(n)^2 = A046092(n)^2. - Bruce J. Nicholson, Jun 05 2017
a(n) = Integral_{x=1..2*n+1} (x^3-x) dx. - César Aguilera, Jun 27 2020
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: 4*x*(2 + x)*(2 + 6*x + x^2)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Extensions
Name corrected by Harry J. Smith, Jul 03 2009
Comments