A060355 Numbers k such that k and k+1 are powerful numbers.
8, 288, 675, 9800, 12167, 235224, 332928, 465124, 1825200, 11309768, 384199200, 592192224, 4931691075, 5425069447, 13051463048, 221322261600, 443365544448, 865363202000, 8192480787000, 11968683934831, 13325427460800, 15061377048200, 28821995554247
Offset: 1
Keywords
Examples
1825200 belongs to this sequence because both 1825200 = 2^4 * 3^3 * 5^2 * 13^2 and 1825201 = 7^2 * 193^2 = 1351^2 are powerful numbers. - _Labos Elemer_, May 03 2001
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 288, pp. 74, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, B16.
- P. Shiu, On the number of square-full integers between successive squares, Volume 27, Issue 2 (December 1980), pp. 171-178.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..39 (terms < 10^22)
- C. K. Caldwell, Powerful Numbers.
- P. Erdős, Some personal and mathematical reminiscences of Kurt Mahler, Austral. Math. Soc. Gaz., 16 (1) (1989), 1-2.
- Jérôme Germoni, Nombres puissants au bac S, Images des Mathématiques, CNRS, 2018 (in French).
- J. J. O'Connor and E. F. Robertson, Biography of Kurt Mahler.
- Carlos Rivera, Problem 53. Powerful numbers revisited, The Prime Puzzles & Problems Connection.
- Eric Weisstein's World of Mathematics, Powerful numbers.
Crossrefs
Programs
-
Haskell
a060355 n = a060355_list !! (n-1) a060355_list = map a001694 $ filter ((== 1) . a076446) [1..] -- Reinhard Zumkeller, Jun 03 2015, Nov 30 2012
-
Mathematica
f[n_]:=First[Union[Last/@FactorInteger[n]]];Select[Range[2000000],f[#]>1&&f[#+1]>1&] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *) SequencePosition[Table[If[Min[FactorInteger[n][[;;,2]]]>1,1,0],{n,11310000}],{1,1}][[;;,1]] (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Mar 27 2024 *)
-
PARI
is(n)=ispowerful(n)&&ispowerful(n+1) \\ Charles R Greathouse IV, Nov 16 2012
-
Sage
def A060355(n): a = sloane.A001694 return a.is_powerful(n) and a.is_powerful(n+1) [n for n in (1..333333) if A060355(n)] # Peter Luschny, Feb 08 2015
Extensions
Corrected and extended by Jud McCranie, Jul 08 2001
More terms from Jud McCranie, Oct 13 2002
a(22)-a(23) from Donovan Johnson, Jul 29 2011
Comments