cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A070858 Smallest prime == 1 mod L, where L = LCM of 1 to n.

Original entry on oeis.org

2, 3, 7, 13, 61, 61, 421, 2521, 2521, 2521, 55441, 55441, 4324321, 4324321, 4324321, 4324321, 85765681, 85765681, 232792561, 232792561, 232792561, 232792561, 10708457761, 10708457761, 26771144401, 26771144401, 401567166001, 401567166001, 18632716502401, 18632716502401
Offset: 1

Views

Author

Amarnath Murthy, May 16 2002

Keywords

Comments

Beginning with 3, smallest prime p = a(n) such that p + k is divisible by k + 1 for each k = 1, 2, ..., n. For example: 61 --> 62, 63, 64, 65 and 66 are divisible respectively by 2, 3, 4, 5 and 6. - Robin Garcia, Jul 23 2012

Crossrefs

Programs

  • Maple
    A070858 := proc(n)
        local l,p;
        l := ilcm(seq(i,i=1..n)) ;
        for p from 1 by l do
            if isprime(p) then
                return p;
            end if;
        end do:
    end proc; # R. J. Mathar, Jun 25 2013
  • Mathematica
    a[n_] := Module[{m = 1, lcm = LCM @@ Range[n]}, While[!PrimeQ[m], m += lcm]; m]; Array[a, 30] (* Amiram Eldar, Mar 15 2025 *)
  • PARI
    a(n)=my(L=lcm(vector(n,i,i)),k=1);while(!ispseudoprime(k+=L),); k \\ Charles R Greathouse IV, Jun 25 2013

Extensions

More terms from Sascha Kurz, Feb 02 2003

A060358 a(n) = largest prime < lcm(1..n).

Original entry on oeis.org

5, 11, 59, 59, 419, 839, 2503, 2503, 27701, 27701, 360337, 360337, 360337, 720703, 12252197, 12252197, 232792559, 232792559, 232792559, 232792559, 5354228879, 5354228879, 26771144371, 26771144371, 80313433159, 80313433159, 2329089562799, 2329089562799
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2001

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
    a:= n-> prevprime(b(n)):
    seq(a(n), n=3..30);  # Alois P. Heinz, Feb 17 2024
  • Mathematica
    Table[NextPrime[LCM@@Range[n],-1],{n,3,30}] (* Harvey P. Dale, May 28 2014 *)
  • PARI
    a(n) = precprime(lcm([1..n])); \\ Michel Marcus, Mar 18 2018
    
  • Python
    from sympy import prevprime, lcm
    def A060358(n):
        return prevprime(lcm(range(1,n+1))) # Chai Wah Wu, Jan 22 2020

A060359 a(n) = (smallest prime > k) - (largest prime < k), where k = lcm(1..n).

Original entry on oeis.org

2, 2, 2, 2, 2, 14, 18, 18, 32, 32, 54, 54, 54, 40, 62, 62, 2, 2, 2, 2, 42, 42, 30, 30, 72, 72, 44, 44, 44, 42, 42, 42, 42, 42, 96, 96, 96, 96, 126, 126, 142, 142, 142, 142, 2, 2, 142, 142, 142, 142, 122, 122, 122, 122, 122, 122, 262, 262, 98, 98
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2001

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (m->nextprime(m)-prevprime(m))(ilcm($1..n)):
    seq (a(n), n=3..100);
  • Mathematica
    f[n_]:=Module[{lcmn=LCM@@Range[n]}, NextPrime[lcmn]-NextPrime[lcmn,-1]]; f/@Range[3,70]  (* Harvey P. Dale, Feb 04 2011 *)
  • PARI
    a(n) = my(lc = lcm([1..n])); nextprime(lc+1) - precprime(lc-1); \\ Michel Marcus, Mar 20 2018

Formula

a(n) = A013633(A003418(n)). - Michel Marcus, Mar 20 2018

A060362 a(n) = Min { { smallest prime > k } - k, k - { largest prime < k } }, where k = lcm(1..n) = A003418(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 13, 13, 23, 23, 23, 17, 19, 19, 1, 1, 1, 1, 1, 1, 1, 1, 31, 31, 1, 1, 1, 1, 1, 1, 1, 1, 43, 43, 43, 43, 47, 47, 59, 59, 59, 59, 1, 1, 59, 59, 59, 59, 61, 61, 61, 61, 61, 61, 113, 113, 1, 1, 1, 97, 97, 97, 73, 73, 73, 73, 73, 73, 97
Offset: 3

Views

Author

N. J. A. Sloane, Apr 01 2001

Keywords

Crossrefs

Programs

  • Maple
    [seq( min( nextprime(A003418(n))-A003418(n), A003418(n)-prevprime(A003418(n)) ), n=3..100)];
  • Mathematica
    Min[NextPrime[#]-#,#-NextPrime[#,-1]]&/@Table[LCM@@Range[n],{n,80}] (* Harvey P. Dale, Jan 01 2019 *)
  • PARI
    a(n) = my(lcn = lcm([1..n])); min(nextprime(lcn+1)-lcn, lcn-precprime(lcn-1)); \\ Michel Marcus, Mar 29 2018

Extensions

Definition corrected by Jon E. Schoenfield, Mar 18 2018
Showing 1-4 of 4 results.