A060384 Number of decimal digits in n-th Fibonacci number.
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a060384 = a055642 . a000045 -- Reinhard Zumkeller, Mar 09 2013
-
Maple
with(combinat): a:=n->nops(convert(fibonacci(n),base,10)): 1,seq(a(n),n=1..100); # Emeric Deutsch, May 19 2007
-
Mathematica
Table[IntegerLength@ Fibonacci@ n, {n, 0, 84}] /. 0 -> 1 (* or *) Table[Floor[n Log10@ GoldenRatio - Log10@ 5/2] + 1, {n, 0, 84}] /. 0 -> 1 (* Michael De Vlieger, Jul 04 2016 *)
-
PARI
print1("1, 1, "); gold=(1+sqrt(5))/2; for(n=2,100,print1(floor((n*log(gold)-log(5)/2)/log(10))+1", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
-
PARI
a(n) = #Str(fibonacci(n)); \\ Michel Marcus, Jul 04 2016
Formula
a(n) = floor(n*log(tau)/log(10)) +0 or +1 where tau is the golden ratio. - Benoit Cloitre, Oct 29 2002. [Corrected by Hans J. H. Tuenter, Jul 07 2025].
a(n) = floor(n*log_10(gold) - log_10(5)/2) + 1 for n >= 2, where gold is (1+sqrt(5))/2. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
Extensions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007