cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A262401 In prime factorization of n: replace each factor with its largest decimal digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 3, 14, 15, 16, 7, 18, 9, 20, 21, 2, 3, 24, 25, 6, 27, 28, 9, 30, 3, 32, 3, 14, 35, 36, 7, 18, 9, 40, 4, 42, 4, 4, 45, 6, 7, 48, 49, 50, 21, 12, 5, 54, 5, 56, 27, 18, 9, 60, 6, 6, 63, 64, 15, 6, 7, 28, 9, 70, 7, 72, 7, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 25 2015

Keywords

Crossrefs

Programs

  • Haskell
    a262401 = product . map a054055 . a027746_row'
    
  • Mathematica
    Array[Times @@ (Power[Max@ IntegerDigits[#1], #2] & @@@ FactorInteger[#]) &, 74] (* Michael De Vlieger, Jan 23 2022 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = vecmax(digits(f[k,1]))); factorback(f); \\ Michel Marcus, Jan 22 2022

Formula

Multiplicative with p -> A054055(p), p prime.
a(n) = Product_{k=1..A001222(n)} A054055(A027746(n,k)).
a(n) <= n.
a(m) = m iff m is 7-smooth:
a(A002473(n)) = A002473(n) and a(A068191(n)) < A068191(n).
A006530(a(n)) <= 7.
a(a(n)) = a(n).

A090194 Primes which when multiplied by their largest digit and 1 is added form another prime.

Original entry on oeis.org

2, 43, 61, 263, 433, 461, 601, 641, 653, 661, 821, 857, 1061, 1063, 1187, 1361, 1423, 1487, 1613, 1811, 1871, 1877, 2063, 2081, 2143, 2161, 2621, 2801, 2837, 3061, 3163, 3581, 3623, 3631, 3643, 3851, 4561, 5087, 5261, 5381, 5623, 5807, 5861, 6011, 6053
Offset: 1

Views

Author

Enoch Haga, Jan 22 2004

Keywords

Examples

			a(2)=43. Largest digit is 4. Multiply 43*4=172. 172+1=173, prime.
		

Crossrefs

Cf. A060418.

Programs

  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[1+#*Max[IntegerDigits[#]]]&] (* Harvey P. Dale, May 21 2024 *)
  • PARI
    isok(p) = isprime(p) && isprime(p*vecmax(digits(p))+1); \\ Michel Marcus, Jun 08 2014

Formula

In the prime sequence, select largest digit in each prime, multiply by the prime containing that digit, then add 1. If the result is another prime, add to sequence.

A090195 Primes which when multiplied by their largest digit and 1 is subtracted form another prime.

Original entry on oeis.org

2, 41, 163, 181, 211, 431, 463, 613, 653, 853, 1163, 1381, 1483, 1613, 1801, 1861, 1873, 2011, 2063, 2141, 2221, 2243, 2411, 2633, 2851, 3041, 3181, 3583, 3623, 4211, 4241, 4363, 4421, 4463, 4483, 4603, 5563, 5581, 5821, 5851, 6113, 6143, 6203, 6553
Offset: 1

Views

Author

Enoch Haga, Jan 22 2004

Keywords

Examples

			a(2)=41. Largest digit is 4. Multiply 41*4=164. 164-1=163, prime.
		

Crossrefs

Cf. A060418.

Programs

  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[# Max[IntegerDigits[#]]-1]&] (* Harvey P. Dale, Dec 31 2019 *)
  • PARI
    isok(p) = isprime(p) && isprime(p*vecmax(digits(p))-1); \\ Michel Marcus, Jun 08 2014

Formula

In the prime sequence, select largest digit in each prime, multiply by the prime containing that digit, then subtract 1. If the result is another prime, add to sequence.

A155476 Primes p such that p and the p-th prime have the same largest digit.

Original entry on oeis.org

7, 29, 37, 73, 97, 109, 137, 139, 149, 181, 239, 271, 281, 283, 293, 307, 367, 379, 397, 419, 449, 499, 557, 577, 593, 599, 631, 659, 691, 733, 751, 839, 877, 881, 883, 911, 919, 971, 977, 1109, 1129, 1193, 1229, 1249, 1283, 1289, 1291, 1307, 1429, 1489
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 23 2009

Keywords

Examples

			7 (prime) is a term because prime(7)=17 and 7 and 17 have 7 as their largest digit.
29 (prime) is a term because prime(29)=109 and 29 and 109 have 9 as their largest digit.
37 (prime) is a term because prime(37)=157 and 37 and 157 have 7 as their largest digit.
		

Crossrefs

Cf. A000040 (primes), A054055, A060418.

Programs

  • Maple
    A054055 := proc(n) max( op(convert(n,base,10)) ) ; end proc:
    for n from 2 to 2200 do if isprime(n) then if A054055(n) = A054055(ithprime(n)) then printf("%d,",n) ; end if; end if; end do: # R. J. Mathar, May 10 2010
  • PARI
    forprime(p=1,1489,if(vecmax(digits(p))==vecmax(digits(prime(p))),print1(p,", "))) \\ Jinyuan Wang, Feb 13 2019

Extensions

Most terms > 300 corrected by R. J. Mathar, May 10 2010
Showing 1-4 of 4 results.