A060442 Triangle T(n,k), n >= 0, in which n-th row (for n >= 3) lists prime factors of Fibonacci(n) (see A000045), without repetition.
0, 1, 1, 2, 3, 5, 2, 13, 3, 7, 2, 17, 5, 11, 89, 2, 3, 233, 13, 29, 2, 5, 61, 3, 7, 47, 1597, 2, 17, 19, 37, 113, 3, 5, 11, 41, 2, 13, 421, 89, 199, 28657, 2, 3, 7, 23, 5, 3001, 233, 521, 2, 17, 53, 109, 3, 13, 29, 281, 514229, 2, 5, 11, 31, 61, 557, 2417, 3, 7, 47, 2207, 2, 89
Offset: 0
Examples
Triangle begins: 0; 1; 1; 2; 3; 5; 2; 13; 3, 7; 2, 17; 5, 11; 89; 2, 3; 233; 13, 29; 2, 5, 61; 3, 7, 47; 1597; 2, 17, 19; 37, 113; 3, 5, 11, 41; ...
Links
- T. D. Noe and Charles R Greathouse IV, Rows n=0..1422 of triangle, flattened (rows up to 1000 from Noe; using existing factorization databases)
- J. Brillhart, P. L. Montgomery and R. D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), 251-260, S1-S15. Math. Rev. 89h:11002.
- Blair Kelly, Fibonacci and Lucas Factorizations
Programs
-
Haskell
a060442 n k = a060442_tabf !! n !! k a060442_row n = a060442_tabf !! n a060442_tabf = [0] : [1] : [1] : map a027748_row (drop 3 a000045_list) -- Reinhard Zumkeller, Aug 30 2014
-
Maple
with(numtheory): with(combinat): for i from 3 to 50 do for j from 1 to nops(ifactors(fibonacci(i))[2]) do printf(`%d,`, ifactors(fibonacci(i))[2][j][1]) od: od:
Extensions
More terms from James Sellers, Apr 09 2001
Comments