cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A022307 Number of distinct prime factors of n-th Fibonacci number.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 3, 2, 1, 4, 2, 2, 4, 4, 1, 5, 2, 4, 3, 2, 3, 5, 3, 3, 3, 6, 2, 5, 1, 5, 5, 3, 1, 6, 3, 5, 3, 4, 2, 6, 4, 6, 5, 3, 2, 8, 2, 3, 5, 6, 3, 5, 3, 5, 5, 7, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 3, 1, 9, 4, 3, 4, 9, 2, 10, 4, 6, 4, 2, 6, 9, 4, 5, 6
Offset: 0

Views

Author

Keywords

Comments

Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. Exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. - Jonathan Vos Post, Dec 06 2006
First occurrence of k: 0, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, ..., . - Robert G. Wilson v, Dec 10 2006 [Other than 0, this is sequence A060320. - Jon E. Schoenfield, Dec 30 2016]
Row lengths of table A060442. - Reinhard Zumkeller, Aug 30 2014
If k properly divides n then a(n) >= a(k) + 1, except for a(6) = a(3) = 1. - Robert Israel, Aug 18 2015

References

  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.

Crossrefs

Cf. A038575 (number of prime factors, counting multiplicity), A086597 (number of primitive prime factors).
Cf. A060442, A086598 (omega(Lucas(n))).
Cf. A060320. - Jon E. Schoenfield, Dec 30 2016

Programs

  • Haskell
    a022307 n = if n == 0 then 0 else a001221 $ a000045 n
    -- Reinhard Zumkeller, Aug 30 2014
    
  • Magma
    [0] cat [#PrimeDivisors(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
  • Mathematica
    Table[Length[FactorInteger[Fibonacci[n]]], {n, 150}]
  • PARI
    a(n)=omega(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

a(n) = Sum{d|n} A086597(d), Mobius transform of A086597.
a(n) = A001221(A000045(n)) = omega(F(n)). - Jonathan Vos Post, Dec 06 2006

A080648 Sum of prime factors of Fibonacci(n).

Original entry on oeis.org

0, 0, 2, 3, 5, 2, 13, 10, 19, 16, 89, 5, 233, 42, 68, 57, 1597, 38, 150, 60, 436, 288, 28657, 35, 3006, 754, 181, 326, 514229, 110, 2974, 2264, 19892, 5168, 141979, 148, 2443, 9499, 135956, 2228, 62158, 676, 433494437, 641, 109526, 29257, 2971215073, 1185
Offset: 1

Views

Author

Joseph L. Pe, Feb 28 2003

Keywords

Examples

			a(8) = 10 because Fibonacci(8) = 21 and the sum of the prime divisors {3, 7} equals 10.
		

Crossrefs

Cf. A000045, A008472, A060442 (Fibonacci prime factors).

Programs

  • Magma
    [&+PrimeDivisors(Fibonacci(n)):n in [1..48]]; // Marius A. Burtea, Oct 15 2019
  • Maple
    with (numtheory):with(combinat, fibonacci):
    sopf:= proc(n) local e, j; e := ifactors(fibonacci(n))[2]:
    add (e[j][1], j=1..nops(e)) end:
    seq (sopf(n), n=1..100); # Michel Lagneau, Nov 13 2012
    A080648 := proc(n)
        A008472(combinat[fibonacci](n)) ;
    end proc: # R. J. Mathar, Nov 15 2012
    # third Maple program:
    a:= n-> add(i[1], i=ifactors((<<0|1>, <1|1>>^n)[1, 2])[2]):
    seq(a(n), n=1..48);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    Table[Apply[Plus, Transpose[FactorInteger[Fibonacci[n]]][[1]]], {n, 3, 100}] (* Pe *)
    Array[Plus@@First/@FactorInteger[Fibonacci[ # ]]&, 40 ] (* Michel Lagneau, Nov 13 2012 *)
  • PARI
    a(n) = vecsum(factor(fibonacci(n))[,1]); \\ Michel Marcus, Oct 15 2019
    

A233281 Numbers n such that the least Fibonacci number F_k which is a multiple of n has a prime index, i.e., k is in A000040.

Original entry on oeis.org

2, 5, 13, 37, 73, 89, 113, 149, 157, 193, 233, 269, 277, 313, 353, 389, 397, 457, 557, 613, 673, 677, 733, 757, 877, 953, 977, 997, 1069, 1093, 1153, 1213, 1237, 1453, 1597, 1657, 1753, 1873, 1877, 1933, 1949, 1993, 2017, 2137, 2221, 2237, 2309, 2333, 2417, 2473
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2013

Keywords

Comments

Numbers n such that A001177(n) is prime.
Each natural number n belongs to this sequence if the smallest Fibonacci number which it divides is a term of A030426. - Jon E. Schoenfield, Feb 28 2014
A092395 gives all the primes in this sequence (cf. Wikipedia-link), and the first composite occurs as the 69th term, where a(69)=4181 while A092395(69)=4273. After 4181 (= 37*113 = F_19), the next term missing from A092395 is a(148)=10877 (= 73*149. A001177(10877) = 37, F_37 = 24157817 = 2221*10877). Both of these numbers (4181 and 10877) occur in various lists of Fibonacci-related pseudoprimes. Sequence A238082 gives all composites occurring in this sequence.
If n is in this sequence then all divisors d > 1 of n are in this sequence. - Charles R Greathouse IV, Feb 04 2014
Composite members begin 4181, 10877, 75077, 162133, 330929, .... - Charles R Greathouse IV, Mar 07 2014

Crossrefs

Disjoint union of A092395 and A238082. The first 68 terms are identical with A092395, after which follows the first case of the latter sequence, with a(69) = A238082(1) = 4181.

Programs

  • Haskell
    a233281 n = a233281_list !! (n-1)
    a233281_list = filter ((== 1) . a010051 . a001177) [1..]
    -- Reinhard Zumkeller, Apr 04 2014
  • PARI
    is(n)=my(k); while(fibonacci(k++)%n, ); isprime(k) \\ Charles R Greathouse IV, Feb 04 2014
    
  • PARI
    entry(p)=my(k=1);while(fibonacci(k++)%p,);k;
    is(n)={
        if(n%2==0,return(n==2));
        if(n<13, return(n==5));
        my(f=factor(n),p,F);
        if(f[1,2]>1 && f[1,1]<1e14,return(0));
        p=entry(f[1,1]);
        F=fibonacci(p);
        if(f[1,2]>1 && F%f[1,1]^f[1,2],return(0));
        if(!isprime(p), return(0));
        for(i=2,#f~,
            if(F%f[i,1]^f[i,2],return(0))
        );
        1
    }; \\ Charles R Greathouse IV, Feb 04 2014
    

Formula

A010051(A001177(a(n))) = 1. - Reinhard Zumkeller, Apr 04 2014

A060441 Triangle T(n,k), n >= 0, in which n-th row (for n >= 3) lists prime factors of Fibonacci(n) (see A000045), with repetition.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 2, 2, 2, 13, 3, 7, 2, 17, 5, 11, 89, 2, 2, 2, 2, 3, 3, 233, 13, 29, 2, 5, 61, 3, 7, 47, 1597, 2, 2, 2, 17, 19, 37, 113, 3, 5, 11, 41, 2, 13, 421, 89, 199, 28657, 2, 2, 2, 2, 2, 3, 3, 7, 23, 5, 5, 3001, 233, 521, 2, 17, 53, 109, 3, 13, 29, 281, 514229, 2, 2, 2, 5, 11, 31, 61
Offset: 0

Views

Author

N. J. A. Sloane, Apr 07 2001

Keywords

Comments

Rows have irregular lengths.
T(n,k) = A027746(A000045(n),k), k = 1 .. A038575(n). - Reinhard Zumkeller, Aug 30 2014

Examples

			Triangle begins:
  0;
  1;
  1;
  2;
  3;
  5;
  2, 2, 2;
  13;
  3, 7;
  2, 17;
  ...
		

Crossrefs

Cf. A038575 (row lengths), A027746, A001222.

Programs

  • Haskell
    a060441 n k = a060441_tabf !! (n-1) !! (k-1)
    a060441_row n = a060441_tabf !! (n-1)
    a060441_tabf = [0] : [1] : [1] : map a027746_row (drop 3 a000045_list)
    -- Reinhard Zumkeller, Aug 30 2014
  • Maple
    with(combinat); A060441 := n->ifactor(fibonacci(n));
    with(numtheory): with(combinat): for i from 3 to 50 do for j from 1 to nops(ifactors(fibonacci(i))[2]) do for k from 1 to ifactors(fibonacci(i))[2][j][2] do printf(`%d,`, ifactors(fibonacci(i))[2][j][1]) od: od: od:

Extensions

More terms from James Sellers, Apr 09 2001

A193615 Second-largest prime factor of the n-th Fibonacci number, if composite, or 1 otherwise.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 5, 1, 3, 1, 13, 5, 7, 1, 17, 37, 11, 13, 89, 1, 7, 5, 233, 53, 29, 1, 31, 557, 47, 89, 1597, 13, 19, 149, 113, 233, 41, 2789, 211, 1, 199, 61, 461, 1, 47, 97, 151, 1597, 521, 953, 109, 661, 281, 797, 19489, 353, 61, 4513
Offset: 3

Views

Author

Keywords

Comments

For clarification: if the largest prime factor occurs more than once, then that prime factor is selected.

Examples

			F(82) = 2789 * 59369 * 370248451, so a(82) = 59369.
		

Crossrefs

Programs

  • Mathematica
    factors[n_] := Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]; fn[n_] := Module[{fibn = Fibonacci[n]}, If[PrimeQ[fibn], 1, factors[fibn][[-2]]]]; Table[fn[n], {n, 3, 80}]
  • PARI
    a(n)=my(f=factor(fibonacci(n)),t=#f[,1]);if(f[t,2]==1,if(t==1,1,f[t-1,1]),f[t,1])

A131401 Least number dividing Fibonacci(n) but not dividing Fibonacci(m) for m < n, or 0 if there is no such number.

Original entry on oeis.org

1, 0, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, 29, 10, 47, 1597, 19, 37, 15, 26, 199, 28657, 14, 25, 521, 53, 39, 514229, 20, 557, 2207, 178, 3571, 65, 27, 73, 9349, 466, 35, 2789, 52, 433494437, 43, 85, 139, 2971215073, 64, 97, 101, 3194, 699, 953, 212, 445, 49, 74, 59
Offset: 1

Views

Author

Herbert A. Hauptman (hauptman(AT)hwi.buffalo.edu) & Robert G. Wilson v, Jul 07 2007

Keywords

Comments

First occurrence of n in A001177 or 0 if impossible.
Conjecture: only a(2)=0. I have not found values of a(n) < 2*106 less than 100 for n = 43, 47, 74, 82, 83 & 94.
When Fibonacci(n) is a prime number, then a(n)=Fibonacci(n). Note that a(n)=0 for n=2 because Fibonacci(1)=Fibonacci(2)=1. For n > 2, an upper bound for a(n) is Fibonacci(n). The difficulty in computing this sequence for large n is the factorization of Fibonacci(n), which is required to find the divisors of Fibonacci(n). - T. D. Noe, Jan 12 2009
In other words, the conjecture is true. For n > 2, Fibonacci(n) has at least one divisor that does not divide Fibonacci(k) for k < n. The number of such divisors is A120256(n).

References

  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Afterword by Herbert A. Hauptman, 2. 'The Minor Modulus m(n)', Prometheus Books, NY, 2007, pp. 329-342.

Crossrefs

Cf. A060442. - T. D. Noe, Jan 12 2009

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[Mod[Fibonacci@k, n] != 0 && k < 101, k++ ]; k]; t = Table[0, {100}]; Do[ a = f@n; If[a < 101 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 106}]
    nn=100; fib=Fibonacci[Range[nn]]; Join[{1,0}, Table[dvrs=Rest[Divisors[fib[[n]]]]; k=1; While[d=dvrs[[k]]; pos=Position[fib,?(Mod[ #,d]==0&),1,1]; pos!={{n}}, k++ ]; d, {n,3,nn}]] (* _T. D. Noe, Jan 12 2009 *)

Extensions

Extended by T. D. Noe, Jan 12 2009
Showing 1-6 of 6 results.