cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064725 Sum of primes dividing Fibonacci(n) (with repetition).

Original entry on oeis.org

0, 0, 2, 3, 5, 6, 13, 10, 19, 16, 89, 14, 233, 42, 68, 57, 1597, 42, 150, 60, 436, 288, 28657, 46, 3011, 754, 181, 326, 514229, 114, 2974, 2264, 19892, 5168, 141979, 160, 2443, 9499, 135956, 2228, 62158, 680, 433494437, 641, 109526, 29257, 2971215073
Offset: 1

Views

Author

Jason Earls, Oct 16 2001

Keywords

Examples

			a(12) = 14 because Fibonacci(12) = 144 = 2^4*3^2 and the sum of the prime divisors with repetition is 4*2 + 2*3 = 14.
		

Crossrefs

Cf. A000045, A001414, A080648 (without repetition).

Programs

  • Maple
    with (numtheory):with(combinat, fibonacci):
    sopfr:= proc(n) local e, j; e := ifactors(fibonacci(n))[2]:
    add (e[j][1]*e[j][2], j=1..nops(e)) end:
    seq (sopfr(n), n=1..100); # Michel Lagneau, Nov 13 2012
    # second Maple program:
    a:= n-> add(i[1]*i[2], i=ifactors((<<0|1>, <1|1>>^n)[1, 2])[2]):
    seq(a(n), n=1..47);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    fiboPrimeFactorSum[n_] := Plus @@ Times @@@ FactorInteger@ Fibonacci[n]; fiboPrimeFactorSum[1] = 0; Array[fiboPrimeFactorSum, 60] (* Michel Lagneau, Nov 13 2012 *)
  • PARI
    sopfr(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]*f[i, 2]); return(s) }
    { for (n = 0, 350, write("b064725.txt", n, " ", sopfr(fibonacci(n))) ) } \\ Harry J. Smith, Sep 23 2009

A219187 Sum of distinct prime divisors of Lucas(n).

Original entry on oeis.org

2, 0, 3, 2, 7, 11, 5, 29, 47, 21, 44, 199, 32, 521, 284, 44, 2207, 3571, 112, 9349, 2168, 242, 353, 600, 1152, 263, 90484, 5800, 14510, 19548, 2567, 3010349, 5568, 10102, 63513, 1022, 103713, 54018521, 29134604, 1461, 4689, 370248451, 1796, 151190, 2118, 785
Offset: 0

Views

Author

Michel Lagneau, Nov 14 2012

Keywords

Examples

			a(6) = 5 because Lucas(6) = 21 and the sum of the prime divisors {3, 7} equals 10.
		

Crossrefs

Programs

  • Maple
    with (numtheory):with(combinat,fibonacci):
    sopf:= proc(n) local e, j; e := ifactors(fibonacci(n+1)+fibonacci(n-1))[2]:
    add (e[j][1], j=1..nops(e)) end:
    seq (sopf(n), n=0..100);
  • Mathematica
    Array[If[#==1, 0, Plus@@First/@FactorInteger[LucasL[ # ]]]&, 50, 0]

Formula

a(n) = A008472(A000032(n)). - Amiram Eldar, Sep 03 2019

Extensions

a(0) prepended by Amiram Eldar, Sep 03 2019

A238684 a(1) = a(2) = 1; for n > 2, a(n) is the product of prime factors of the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 13, 21, 34, 55, 89, 6, 233, 377, 610, 987, 1597, 646, 4181, 6765, 10946, 17711, 28657, 966, 15005, 121393, 196418, 317811, 514229, 208010, 1346269, 2178309, 3524578, 5702887, 9227465, 207366, 24157817, 39088169, 63245986, 102334155, 165580141, 66978574, 433494437, 701408733, 1134903170
Offset: 1

Views

Author

Carmine Suriano, Mar 02 2014

Keywords

Comments

In other words, the squarefree part of the n-th Fibonacci number.
a(gcd(m,n)) = gcd(a(m),a(n)). - Robert Israel, Nov 10 2023

Examples

			a(12) = 6 since F(12) = 144 = 2^4 * 3^2 and 2 * 3 = 6.
		

Crossrefs

Programs

  • Maple
    f:= n -> convert(numtheory:-factorset(combinat:-fibonacci(n)),`*`):
    map(f, [$1..100]); # Robert Israel, Nov 10 2023
  • Mathematica
    Table[Times@@Part[Flatten[FactorInteger[Fibonacci[n]]], 1 ;; -2 ;; 2], {n, 3, 50}] (* Alonso del Arte, Mar 02 2014 *)
  • PARI
    a(n) = my(f = factor(fibonacci(n))); prod(i=1, #f~, f[i, 1]); \\ Michel Marcus, Mar 02 2014

Formula

a(n) = A007947(A000045(n)) - Tom Edgar, Mar 03 2014

A280106 Numbers k such that the half sum of the prime factors of Fibonacci(k) is a Fibonacci number.

Original entry on oeis.org

3, 6, 8, 10, 14, 15, 22, 26, 30, 34, 94
Offset: 1

Views

Author

Michel Lagneau, Dec 28 2016

Keywords

Comments

Or numbers k such that A080648(k)/2 is a Fibonacci number.
Is this sequence finite ?
a(12), if it exists is >5000. - Robert Price, Mar 02 2017

Examples

			10 is in the sequence because Fibonacci(10) = 5*11=> 5+11 = 2*8 = 2*F(6);
94 is in the sequence because Fibonacci(94) = 2971215073*6643838879 =>
2971215073+6643838879 = 2*4807526976 = 2*F(48).
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):nn:=300:
    for n from 3 to nn do:
      f:=fibonacci(n):x:=factorset(f):n0:=nops(x):
      s:=sum(ā€˜x[i]’, ā€˜i’=1..n0):c:=s/2:
      x1:=sqrt(5*c^2-4):x2:=sqrt(5*c^2+4):
        if x1=floor(x1) or x2=floor(x2)
         then
         print(n):
         else
        fi:
    od:
Showing 1-4 of 4 results.