A064725 Sum of primes dividing Fibonacci(n) (with repetition).
0, 0, 2, 3, 5, 6, 13, 10, 19, 16, 89, 14, 233, 42, 68, 57, 1597, 42, 150, 60, 436, 288, 28657, 46, 3011, 754, 181, 326, 514229, 114, 2974, 2264, 19892, 5168, 141979, 160, 2443, 9499, 135956, 2228, 62158, 680, 433494437, 641, 109526, 29257, 2971215073
Offset: 1
Keywords
Examples
a(12) = 14 because Fibonacci(12) = 144 = 2^4*3^2 and the sum of the prime divisors with repetition is 4*2 + 2*3 = 14.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000 (terms 1..350 from Harry J. Smith)
Programs
-
Maple
with (numtheory):with(combinat, fibonacci): sopfr:= proc(n) local e, j; e := ifactors(fibonacci(n))[2]: add (e[j][1]*e[j][2], j=1..nops(e)) end: seq (sopfr(n), n=1..100); # Michel Lagneau, Nov 13 2012 # second Maple program: a:= n-> add(i[1]*i[2], i=ifactors((<<0|1>, <1|1>>^n)[1, 2])[2]): seq(a(n), n=1..47); # Alois P. Heinz, Sep 03 2019
-
Mathematica
fiboPrimeFactorSum[n_] := Plus @@ Times @@@ FactorInteger@ Fibonacci[n]; fiboPrimeFactorSum[1] = 0; Array[fiboPrimeFactorSum, 60] (* Michel Lagneau, Nov 13 2012 *)
-
PARI
sopfr(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]*f[i, 2]); return(s) } { for (n = 0, 350, write("b064725.txt", n, " ", sopfr(fibonacci(n))) ) } \\ Harry J. Smith, Sep 23 2009
Comments