cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046799 Number of distinct prime factors of 2^n+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 1, 2, 4, 2, 2, 3, 3, 2, 3, 4, 4, 3, 2, 3, 5, 2, 2, 4, 4, 5, 4, 3, 4, 3, 2, 3, 6, 2, 3, 5, 5, 3, 3, 3, 5, 5, 3, 3, 6, 5, 3, 4, 3, 4, 4, 2, 5, 5, 2, 6, 6, 3, 3, 4, 6, 3, 5, 3, 5, 6, 4, 6, 9, 2, 3, 6, 5, 6, 5, 4, 5, 4, 4, 4, 10, 6, 2, 4, 4, 5, 3, 5, 6, 7, 6, 2, 9, 3, 2
Offset: 0

Views

Author

Keywords

Comments

The length of row n in A060444.

Examples

			For n=7, 129 = 3.43 has 2 prime factors, so a(7) = 2.
		

Crossrefs

Cf. A000051, A001221, A060444, A086257 (number of primitive prime factors).

Programs

  • Mathematica
    PrimeNu[1 + 2^#] & /@ Range[0, 104] (* Jayanta Basu, Jun 29 2013 *)
  • PARI
    a(n) = omega(2^n+1); \\ Michel Marcus, Mar 25 2017

Formula

a(n) = A001221(A000051(n)). - Amiram Eldar, Oct 04 2019

A001269 Table T(n,k) in which n-th row lists prime factors of 2^n + 1 (n >= 0), with repetition.

Original entry on oeis.org

2, 3, 5, 3, 3, 17, 3, 11, 5, 13, 3, 43, 257, 3, 3, 3, 19, 5, 5, 41, 3, 683, 17, 241, 3, 2731, 5, 29, 113, 3, 3, 11, 331, 65537, 3, 43691, 5, 13, 37, 109, 3, 174763, 17, 61681, 3, 3, 43, 5419, 5, 397, 2113, 3, 2796203, 97, 257, 673, 3, 11, 251, 4051
Offset: 0

Views

Author

Keywords

Comments

Rows have irregular lengths.
The length of row n is A054992(n).

Examples

			Triangle begins:
  2;
  3;
  5;
  3,3,17;
  3,11;
  5,13;
  3,43;
  257;
  ...
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

Crossrefs

Cf. A060444 (factors w/o repetition), A054992 (row lengths).

Programs

  • Mathematica
    repeat[{p_, e_}] := Table[p, {e}]; row[n_] := repeat /@ FactorInteger[2^n + 1] // Flatten; Table[row[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Jul 13 2012 *)
  • PARI
    apply( A001269_row(n)=concat(apply(f->vector(f[2],i,f[1]), Col(factor(2^n+1))~)), [0..19]) \\ M. F. Hasler, Nov 19 2018

A069226 a(n) = gcd(n, 2^n + 1).

Original entry on oeis.org

2, 1, 1, 3, 1, 1, 1, 1, 1, 9, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 27, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 25, 3, 1, 1, 1, 11, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 17, 3, 5, 1, 1, 1, 1, 3, 1, 1, 13, 1, 1, 81, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1
Offset: 0

Views

Author

Vladeta Jovovic, Apr 12 2002

Keywords

Comments

First occurrence of n: a(1)=1, a(3)=3, a(10)=5, a(9)=9, a(55)=11, a(78)=13, a(68)=17, a(50)=25, a(27)=27, a(406)=29, a(165)=33, a(666)=37, a(301)=43, a(1378)=53, a(1711)=59, a(390)=65, a(81)=81, a(3403)=83, a(2328)=97, a(495)=99, ... - R. J. Mathar, Dec 14 2016

Crossrefs

Cf. A006521 (fixed points), A014491, A049095, A049096, A060444.

Programs

  • Mathematica
    Table[GCD[n,2^n+1],{n,100}] (* Harvey P. Dale, Dec 12 2012 *)
  • PARI
    A069226(n) = gcd(n, 1+(1<Antti Karttunen, Jan 15 2025

Extensions

Term a(0) = 2 prepended by Antti Karttunen, Jan 15 2025
Showing 1-3 of 3 results.