A060542 a(n) = (1/6)*multinomial(3*n;n,n,n).
1, 15, 280, 5775, 126126, 2858856, 66512160, 1577585295, 37978905250, 925166131890, 22754499243840, 564121960420200, 14079683012144400, 353428777651788000, 8915829964229105280, 225890910734335847055, 5744976449471863238250, 146603287914300510042750
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..100
- Eric Weisstein's World of Mathematics, Adjacency Matrix
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
Programs
-
Maple
a:= n-> combinat[multinomial](3*n,n$3)/3!: seq(a(n), n=1..18); # Alois P. Heinz, Jul 29 2023
-
Mathematica
Table[(3*n)!/(n!^3*6),{n,1,20}] (* Vaclav Kotesovec, Sep 23 2013 *) Table[Multinomial[n, n, n], {n, 20}]/6 (* Eric W. Weisstein, Apr 21 2017 *)
-
PARI
{ a=1/6; for (n=1, 100, write("b060542.txt", n, " ", a=a*3*(3*n - 1)*(3*n - 2)/n^2); ) } \\ Harry J. Smith, Jul 06 2009
Formula
a(n) = (3*n)!/((n!)^3*6) = a(n-1)*3*(3*n - 1)*(3*n - 2)/n^2 = A060540(3,n) = A006480(n)/6. - corrected by Vaclav Kotesovec, Sep 23 2013
a(n) ~ 3^(3*n-1/2)/(4*Pi*n). - Vaclav Kotesovec, Sep 23 2013
a(n) = 1/(8*n^3) * Sum_{k = 0..2*n} (-1)^(n+k) * k*(2*n-k)^2 * binomial(2*n, k)^3. - Peter Bala, Oct 11 2024
a(n) = 1/(n^2) * Sum_{k = 0..n} (-1)^(n+k+1) * (n-k)^2 * binomial(2*n, k)^3. - Peter Bala, Nov 03 2024
Extensions
Definition revised by N. J. A. Sloane, Feb 02 2009
Comments