cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A060550 a(n) is the number of distinct patterns (modulo geometric D_3-operations) with no other than strict 120-degree rotational symmetry which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 1, 2, 6, 2, 6, 12, 6, 12, 28, 12, 28, 56, 28, 56, 120, 56, 120, 240, 120, 240, 496, 240, 496, 992, 496, 992, 2016, 992, 2016, 4032, 2016, 4032, 8128, 4032, 8128, 16256, 8128, 16256, 32640, 16256, 32640, 65280, 32640
Offset: 1

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Comments

The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.

Crossrefs

Programs

  • PARI
    a(n) = { 2^(floor(n/3) + (n%3)%2 - 1) - 2^(floor((n + 3)/6) + (n%6==1) - 1) } \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = 2^(floor(n/3) + (n mod 3) mod 2 - 1) - 2^(floor((n+3)/6) + d(n)-1), with d(n)=1 if n mod 6=1, otherwise d(n)=0.
a(n) = (A060547(n) - A060548(n))/2.
a(n) = 2^(A008611(n-1) - 1) + 2^(A008615(n+1) - 1), for n >= 1.
G.f.: x^4*(x^2 - x + 1)*(x^2 + x + 1) / ((2*x^3-1)*(2*x^6-1)). - Colin Barker, Aug 29 2013

A060552 a(n) is the number of distinct (modulo geometric D3-operations) nonsymmetric (no reflective nor rotational symmetry) patterns which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 14, 35, 70, 154, 310, 650, 1300, 2666, 5332, 10788, 21588, 43428, 86856, 174244, 348488, 697992, 1396040, 2794120, 5588240, 11180680, 22361360, 44730896, 89462032, 178940432, 357880864, 715794960
Offset: 1

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { (2^(n-1)-2^(floor(n/3)+(n%3)%2-1))/3+2^(floor((n+3)/6)+(n%6==1)-1)-2^floor((n-1)/2) } \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = (2^(n-1) - 2^(floor(n/3) + (n mod 3)mod 2 - 1))/3 + 2^(floor((n+3)/6) + d(n) - 1) - 2^floor((n-1)/2), with d(n)=1 if n mod 6=1 else d(n)=0.
a(n) = (A000079(n-1) - A060547(n)/2)/3 + A060548(n)/2 -A060546(n)/2.
a(n) = (A000079(n-1) - 2^(A008611(n-1) - 1))/3 + 2^(A008615(n+1) - 1) - 2^(A008619(n-1) - 1), n >= 1.
From R. J. Mathar, Aug 03 2009: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - 4*a(n-4) - 4*a(n-5) + 10*a(n-6) - 4*a(n-7) - 4*a(n-8) + 4*a(n-9) + 8*a(n-10) + 8*a(n-11) - 16*a(n-12).
G.f.: -x^4*(-1 - x^2 - x^4 + 2*x^3 + 2*x^5 + 2*x^6)/((2*x-1)*(2*x^2-1)*(2*x^3-1)*(2*x^6-1)). (End)

A060549 a(n) is the number of distinct patterns (modulo geometric D3-operations) with strict median-reflective (palindrome) symmetry (i.e., having no other symmetry) which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.

Original entry on oeis.org

0, 1, 2, 2, 6, 6, 12, 14, 28, 28, 60, 60, 120, 124, 248, 248, 504, 504, 1008, 1016, 2032, 2032, 4080, 4080, 8160, 8176, 16352, 16352, 32736, 32736, 65472, 65504, 131008, 131008, 262080, 262080, 524160, 524224, 1048448, 1048448, 2097024, 2097024
Offset: 1

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { 2^ceil(n/2) - 2^(floor((n + 3)/6) + (n%6==1)) } \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = 2^ceiling(n/2) - 2^(floor((n+3)/6) + d(n)), with d(n)=1 if n mod 6=1 else d(n)=0.
a(n) = A060546(n) - A060548(n) = 2^A008619(n-1) - 2^A008615(n+1), for n >= 1.
G.f.: x^2*(2*x^4 + 2*x^3 + 2*x + 1) / ((2*x^2-1)*(2*x^6-1)). - Colin Barker, Aug 29 2013

A060551 a(n) is the number of nonsymmetric patterns (no reflective, nor rotational symmetry) which may be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.

Original entry on oeis.org

0, 0, 0, 6, 12, 42, 84, 210, 420, 924, 1860, 3900, 7800, 15996, 31992, 64728, 129528, 260568, 521136, 1045464, 2090928, 4187952, 8376240, 16764720, 33529440, 67084080, 134168160, 268385376, 536772192, 1073642592, 2147285184, 4294769760, 8589539520, 17179472064
Offset: 1

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,2,-2,-4,-4,10,-4,-4,4,8,8,-16},{0,0,0,6,12,42,84,210,420,924,1860,3900},40] (* Harvey P. Dale, Feb 01 2015 *)
  • PARI
    a(n) = { 2^n-3*2^ceil(n/2)-2^(floor(n/3)+(n%3)%2)+3*2^(floor((n+3)/6)+(n%6==1)) } \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = 2^n - 3*2^ceiling(n/2) - 2^(floor(n/3)+(n mod 3)mod 2) + 3*2^(floor((n+3)/6) + d(n)), with d(n)=1 if n mod 6=1 else d(n)=0.
a(n) = A000079(n) - 3*A060546(n) - A060547(n) + 3*A060548(n).
a(n) = A000079(n) - 3*2^A008619(n-1) - 2^A008611(n-1) + 3*2^A008615(n+1), for n >= 1.
G.f.: -6*x^4*(2*x^6 + 2*x^5 - x^4 + 2*x^3 - x^2 - 1) / ((2*x-1)*(2*x^2-1)*(2*x^3-1)*(2*x^6-1)). - Colin Barker, Aug 29 2013
a(n) = 6*A060552(n). - Andrew Howroyd, Dec 24 2024

Extensions

More terms from Colin Barker, Aug 29 2013

A140426 Number of multi-symmetric Steinhaus matrices of size n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 4, 4, 4, 8, 4, 8, 8, 8, 8, 16, 8, 16, 16, 16, 16, 32, 16, 32, 32, 32, 32, 64, 32, 64, 64, 64, 64, 128, 64, 128, 128, 128, 128, 256, 128, 256, 256, 256, 256, 512, 256, 512, 512, 512, 512, 1024, 512, 1024, 1024, 1024, 1024, 2048, 1024, 2048, 2048, 2048, 2048, 4096, 2048
Offset: 0

Views

Author

Jonathan Vos Post, Jun 18 2008

Keywords

Comments

Theorem 3.7, p. 9, of Chappelon.

Crossrefs

Cf. A060548.

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 2}, {1, 1, 2, 1, 2, 2}, 100] (* Jean-François Alcover, Sep 25 2019 *)
  • PARI
    Vec((1 + x + 2*x^2 + x^3 + 2*x^4 + 2*x^5)/(1 - 2*x^6) + O(x^80)) \\ Andrew Howroyd, Nov 03 2018

Formula

a(n) = 2^ceiling(n/6) for n even, 2^ceiling((n-3)/6) for n odd.
G.f.: ( -1-x-2*x^2-x^3-2*x^4-2*x^5 ) / ( -1+2*x^6 ). - R. J. Mathar, Jan 22 2011
a(n) = A060548(n-1) for n >= 2. - Georg Fischer, Nov 03 2018
Showing 1-5 of 5 results.