cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060576 a(n) = 1 except for a(1) = 0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Apr 03 2001

Keywords

Comments

Old name: Number of homeomorphically irreducible general graphs on 1 labeled node and with n edges.
A homeomorphically irreducible general graph is a graph with multiple edges and loops and without nodes of degree 2.
This sequence is also produced by Wolfram's Rule 253 of Elementary Cellular Automaton as a triangle read by rows giving successive states initiated with a single ON (black) cell. See the Wolfram, Weisstein and Index links below. - Robert Price, Jan 31 2016
Decimal expansion of 91/900. - Elmo R. Oliveira, May 05 2024

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.

Crossrefs

Programs

Formula

G.f.: (x^2 - x + 1)/(1 - x). a(0)=1, a(1)=0; a(n)=1, n > 1.
E.g.f. for homeomorphically irreducible general graphs with n nodes and k edges is (1 + x*y)^(- 1/2)*exp(- x*y/2 + x^2*y^2/4)*Sum_{k >= 0} 1/(1 - x)^binomial(k + 1, 2)*exp(- x^2*y*k^2/(2*(1 + x*y)) - x^2*y*k/2)*y^k/k!.
E.g.f.: e^x - x. - Paul Barry, May 06 2007
a(n) = 1 - binomial(0,n-1). - Arkadiusz Wesolowski, Feb 10 2012

Extensions

Definition simplified by N. J. A. Sloane, Sep 26 2023

A371912 Maximum Zagreb index of maximal 3-degenerate graphs with n vertices.

Original entry on oeis.org

12, 36, 66, 102, 144, 192, 246, 306, 372, 444, 522, 606, 696, 792, 894, 1002, 1116, 1236, 1362, 1494, 1632, 1776, 1926, 2082, 2244, 2412, 2586, 2766, 2952, 3144, 3342, 3546, 3756, 3972, 4194, 4422, 4656, 4896, 5142, 5394, 5652, 5916, 6186, 6462, 6744, 7032, 7326, 7626, 7932
Offset: 3

Views

Author

Allan Bickle, Apr 11 2024

Keywords

Comments

The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.
A maximal 3-degenerate graph can be constructed from a 3-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to three existing vertices. The extremal graphs are 3-stars, so the bound also applies to 3-trees.

Examples

			The graph K_3 has 3 degree 2 vertices, so a(3) = 3*4 = 12.
		

Crossrefs

Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

  • Mathematica
    Array[3*(#^2 + # - 8) &, 50, 3] (* Paolo Xausa, Jun 09 2024 *)

Formula

a(n) = 3*(n-1)^2 + 9*(n-3).
a(n) = 6*A046691(n-2) for n>2.
a(n) = 6*A060577(n-1) for n>3.
G.f.: 6*x^3*(2 - x^2)/(1 - x)^3. - Stefano Spezia, Apr 12 2024
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5. - Chai Wah Wu, Apr 16 2024
Sum_{n>=3} 1/a(n) = 19/72 + Pi*tan(Pi*sqrt(33)/2)*sqrt(33)/99 = 0.1865497.... - R. J. Mathar, Apr 22 2024
Showing 1-2 of 2 results.