A060632 a(n) = 2^wt(floor(n/2)) (i.e., 2^A000120(floor(n/2)), or A001316(floor(n/2))).
1, 1, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 4, 4, 8, 8, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 4, 4, 8, 8, 8, 8, 16, 16, 8, 8, 16, 16, 16, 16, 32, 32, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 4, 4, 8, 8, 8, 8, 16, 16, 8, 8, 16, 16, 16, 16, 32
Offset: 0
Keywords
Examples
a(3) = 2 because in S_3 there are two conjugacy classes with odd number of elements, the trivial conjugacy class and the conjugacy class of transpositions consisting of 3 elements: (12),(13),(23). From _Omar E. Pol_, Oct 12 2011 (Start): Written as a triangle: 1, 1, 2,2, 2,2,4,4, 2,2,4,4,4,4,8,8, 2,2,4,4,4,4,8,8,4,4,8,8,8,8,16,16, 2,2,4,4,4,4,8,8,4,4,8,8,8,8,16,16,4,4,8,8,8,8,16,16,8,... (End)
References
- I. G. MacDonald: Symmetric functions and Hall polynomials Oxford: Clarendon Press, 1979. Page 21.
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..65536 (terms 0..1000 from Harry J. Smith)
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Christina Talar Bekaroğlu, Analyzing Dynamics of Larger than Life: Impacts of Rule Parameters on the Evolution of a Bug's Geometry, Master's thesis, Calif. State Univ. Northridge (2023). See p. 92.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to toothpick sequences
Programs
-
Magma
a000120:=func< n | &+Intseq(n, 2) >; [ 2^a000120(Floor(n/2)): n in [0..100] ]; // Klaus Brockhaus, Oct 15 2010
-
Maple
A060632 := proc(n) local k; add(binomial(n,2*k) mod 2, k=0..floor(n/2)); end: seq(A060632(n),n=0..94); # edited by Johannes W. Meijer, May 28 2011 A060632 := n -> 2^add(i, i = convert(iquo(n,2), base, 2)); # Peter Luschny, Jun 30 2011 A060632 := n -> igcd(2^n, n! / iquo(n,2)!^2); # Peter Luschny, Jun 30 2011
-
Mathematica
a[n_] := 2^DigitCount[Floor[n/2], 2, 1]; Table[a[n], {n, 0, 94}] (* Jean-François Alcover, Feb 25 2014 *)
-
PARI
for (n=0, 1000, write("b060632.txt", n, " ", sum(k=0, floor(n/2), binomial(n, 2*k) % 2)) ) \\ Harry J. Smith, Sep 14 2009
-
PARI
a(n)=2^hammingweight(n\2) \\ Charles R Greathouse IV, Feb 06 2017
-
Python
def A060632(n): return 2**bin(n/2)[2:].count("1") # Indranil Ghosh, Feb 06 2017
Formula
a(n) = sum{k=0..floor(n/2), C(n, 2k) mod 2} - Paul Barry, Jan 03 2005, Edited by Harry J. Smith, Sep 15 2009
a(n) = gcd(A056040(n), 2^n). - Peter Luschny, Jun 30 2011
G.f.: (1 + x) * Product_{k>=0} (1 + 2*x^(2^(k+1))). - Ilya Gutkovskiy, Jul 19 2019
Extensions
More terms from James Sellers, Apr 16 2001
Edited by N. J. A. Sloane, Jun 06 2008; Oct 11 2010
a(0) = 1 added by N. J. A. Sloane, Sep 14 2009
Formula corrected by Harry J. Smith, Sep 15 2009
Comments