cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060632 a(n) = 2^wt(floor(n/2)) (i.e., 2^A000120(floor(n/2)), or A001316(floor(n/2))).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 4, 4, 8, 8, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 4, 4, 8, 8, 8, 8, 16, 16, 8, 8, 16, 16, 16, 16, 32, 32, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 4, 4, 8, 8, 8, 8, 16, 16, 8, 8, 16, 16, 16, 16, 32
Offset: 0

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 15 2001

Keywords

Comments

Number of conjugacy classes in the symmetric group S_n that have odd number of elements.
Also sequence A001316 doubled.
Number of even numbers whose binary expansion is a child of the binary expansion of n. - Nadia Heninger and N. J. A. Sloane, Jun 06 2008
First differences of A151566. Sequence gives number of toothpicks added at the n-th generation of the leftist toothpick sequence A151566. - N. J. A. Sloane, Oct 20 2010
The Fi1 and Fi1 triangle sums, see A180662 for their definitions, of Sierpiński's triangle A047999 equal this sequence. - Johannes W. Meijer, Jun 05 2011
Also number of odd entries in n-th row of triangle of Stirling numbers of the first kind. - Istvan Mezo, Jul 21 2017

Examples

			a(3) = 2 because in S_3 there are two conjugacy classes with odd number of elements, the trivial conjugacy class and the conjugacy class of transpositions consisting of 3 elements: (12),(13),(23).
From _Omar E. Pol_, Oct 12 2011 (Start):
Written as a triangle:
1,
1,
2,2,
2,2,4,4,
2,2,4,4,4,4,8,8,
2,2,4,4,4,4,8,8,4,4,8,8,8,8,16,16,
2,2,4,4,4,4,8,8,4,4,8,8,8,8,16,16,4,4,8,8,8,8,16,16,8,...
(End)
		

References

  • I. G. MacDonald: Symmetric functions and Hall polynomials Oxford: Clarendon Press, 1979. Page 21.

Crossrefs

Programs

  • Magma
    a000120:=func< n | &+Intseq(n, 2) >; [ 2^a000120(Floor(n/2)): n in [0..100] ]; // Klaus Brockhaus, Oct 15 2010
    
  • Maple
    A060632 := proc(n) local k; add(binomial(n,2*k) mod 2, k=0..floor(n/2)); end: seq(A060632(n),n=0..94); # edited by Johannes W. Meijer, May 28 2011
    A060632 := n -> 2^add(i, i = convert(iquo(n,2), base, 2)); # Peter Luschny, Jun 30 2011
    A060632 := n -> igcd(2^n, n! / iquo(n,2)!^2);  # Peter Luschny, Jun 30 2011
  • Mathematica
    a[n_] := 2^DigitCount[Floor[n/2], 2, 1]; Table[a[n], {n, 0, 94}] (* Jean-François Alcover, Feb 25 2014 *)
  • PARI
    for (n=0, 1000, write("b060632.txt", n, " ", sum(k=0, floor(n/2), binomial(n, 2*k) % 2)) ) \\ Harry J. Smith, Sep 14 2009
    
  • PARI
    a(n)=2^hammingweight(n\2) \\ Charles R Greathouse IV, Feb 06 2017
    
  • Python
    def A060632(n):
        return 2**bin(n/2)[2:].count("1") # Indranil Ghosh, Feb 06 2017

Formula

a(n) = sum{k=0..floor(n/2), C(n, 2k) mod 2} - Paul Barry, Jan 03 2005, Edited by Harry J. Smith, Sep 15 2009
a(n) = gcd(A056040(n), 2^n). - Peter Luschny, Jun 30 2011
G.f.: (1 + x) * Product_{k>=0} (1 + 2*x^(2^(k+1))). - Ilya Gutkovskiy, Jul 19 2019

Extensions

More terms from James Sellers, Apr 16 2001
Edited by N. J. A. Sloane, Jun 06 2008; Oct 11 2010
a(0) = 1 added by N. J. A. Sloane, Sep 14 2009
Formula corrected by Harry J. Smith, Sep 15 2009