A060656 a(n) = 2*a(n-1)*a(n-2)/a(n-3), with a(0)=a(1)=1.
1, 1, 2, 4, 16, 64, 512, 4096, 65536, 1048576, 33554432, 1073741824, 68719476736, 4398046511104, 562949953421312, 72057594037927936, 18446744073709551616, 4722366482869645213696, 2417851639229258349412352
Offset: 0
Examples
a(6) = 2*64*16/4 = 512. G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 512*x^6 + 4096*x^7 + ...
Links
- Harry J. Smith, Table of n, a(n) for n = 0..100
- Peter Luschny, Sequence transformations
- Dennis P. Walsh, Notes on binary bisymmetric matrices
Programs
-
Maple
A060656:=n->2^floor(n^2/4); seq(A060656(n), n=0..20); # Wesley Ivan Hurt, Apr 30 2014
-
Mathematica
a[ n_] := 2^Quotient[n^2, 4]; (* Michael Somos, Jan 24 2014 *) nxt[{a_,b_,c_}]:={b,c,(2c*b)/a}; NestList[nxt,{1,1,2},20][[All,1]] (* Harvey P. Dale, Nov 26 2017 *)
-
PARI
{ for (n=0, 100, write("b060656.txt", n, " ", 2^(n^2\4)); ) } \\ Harry J. Smith, Jul 09 2009
-
PARI
{a(n) = 2^(n^2\4)}; /* Michael Somos, Jan 24 2014 */
Formula
a(n) = 2^floor( n^2/4 ) = a(n - 1) * 2^floor( n/2 ) = a(n - 2) * 2^(n - 1) = a(n - 1) * A016116(n) = 2^A002620(n).
0 = a(n) * a(n+3) + a(n+1) * ( -2*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014
0 = a(n) * a(n+4) + a(n+2) * ( -4*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014
Comments