cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060687 Numbers k such that there exist exactly 2 Abelian groups of order k, i.e., A000688(k) = 2.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 44, 45, 49, 50, 52, 60, 63, 68, 75, 76, 84, 90, 92, 98, 99, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 188, 198, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268, 275, 276, 279
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

Keywords

Comments

k belongs to this sequence iff exactly one prime in its factorization into prime powers has exponent 2 and all the other primes in the factorization have exponent 1, for example 60 = 2^2 * 3 * 5.
Numbers k such that A046660(k) = 1. - Zak Seidov, Nov 14 2012
Numbers that have twice as many unitary divisors as nonunitary divisors, the largest possible ratio for nonsquarefree numbers (i.e., numbers that have nonunitary divisors). - Amiram Eldar, Nov 01 2024

Crossrefs

Programs

  • Haskell
    a060687 n = a060687_list !! (n-1)
    a060687_list = filter ((== 1) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
    
  • Mathematica
    Select[Range[500], PrimeOmega[#] - PrimeNu[#] == 1 &] (* Harvey P. Dale, Sep 08 2011 *)
  • PARI
    for(n=1,279,if(bigomega(n)-omega(n)==1,print1(n,",")))
    
  • PARI
    is(n)=factorback(factor(n)[,2])==2 \\ Charles R Greathouse IV, Sep 18 2015
    
  • PARI
    list(lim)=my(s=lim\4,v=List(),u=vectorsmall(s,i,1),t,x); forprime(k=2,sqrtint(s), t=k^2; forstep(i=t,s,t, u[i]=0)); forprime(k=2,sqrtint(lim\1), t=k^2; for(i=1,#u, if(u[i] && gcd(k,i)==1, x=t*i; if(x>lim, break); listput(v,x)))); Set(v) \\ Charles R Greathouse IV, Aug 02 2016
    
  • Python
    from math import isqrt
    from sympy import mobius, primerange
    def A060687(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return int(n+x+sum(sum(g(x//p**j) if j&1 else -g(x//p**j) for j in range(2,x.bit_length())) for p in primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025
    
  • Python
    from sympy import factorint
    def is_A060687(n): return sum(v := factorint(n).values()) == len(v) + 1 # David Radcliffe, Jul 28 2025

Formula

k such that A001222(k)-A001221(k) = 1.
Cohen proved that a(n) = kn + O(sqrt(n) log log n), where k = A013661/A179119 = 1/A271971 = 4.981178... - Charles R Greathouse IV, Aug 02 2016

Extensions

Corrected and extended by Vladeta Jovovic, Jul 05 2001